This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212193 #8 Feb 16 2025 08:33:17 %S A212193 1,0,0,2,0,0,1,0,0,2,2,3,2,0,0,3,0,0,1,3,1,3,0,0,1,0,0,2,2,3,2,2,3,3, %T A212193 3,3,2,2,3,2,0,0,3,0,0,3,3,3,3,0,0,3,0,0,1,3,1,3,3,3,1,3,1,3,3,3,3,0, %U A212193 0,3,0,0,1,3,1,3,0,0,1,0,0,2,2,3,2,2 %N A212193 In ternary representation of n: a(n) = if n is pandigital then 3 else least digit not used. %C A212193 a(A032924(n)) = 0; a(A081605(n)) <> 0; %C A212193 a(A031944(n)) = 3; a(A154314(n)) <> 3. %H A212193 Reinhard Zumkeller, <a href="/A212193/b212193.txt">Table of n, a(n) for n = 0..10000</a> %H A212193 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Ternary.html">Ternary</a> %H A212193 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PandigitalNumber.html">Pandigital Number</a> %H A212193 Wikipedia, <a href="http://en.wikipedia.org/wiki/Ternary_numeral_system">Ternary numeral system</a> %H A212193 Wikipedia, <a href="http://en.wikipedia.org/wiki/Pandigital_number">Pandigital number</a> %e A212193 . 0 -> '0': a(0) = 1 %e A212193 . 1 -> '1': a(1) = 0 %e A212193 . 2 -> '2': a(2) = 0 %e A212193 . 3 -> '10': a(3) = 2 %e A212193 . 4 -> '11': a(4) = 0 %e A212193 . 5 -> '12': a(5) = 0 %e A212193 . 6 -> '20': a(6) = 1 %e A212193 . 7 -> '21': a(7) = 0 %e A212193 . 8 -> '22': a(8) = 0 %e A212193 . 9 -> '100': a(9) = 2 %e A212193 . 10 -> '101': a(10) = 2 %e A212193 . 11 -> '102': a(11) = 3 <-- 11 is the smallest 3-pandigital number %e A212193 . 12 -> '110': a(12) = 2 %e A212193 . 13 -> '111': a(13) = 0 %e A212193 . 14 -> '112': a(14) = 0 %e A212193 . 15 -> '120': a(15) = 3. %o A212193 (Haskell) %o A212193 import Data.List (delete) %o A212193 a212193 n = f n [0..3] where %o A212193 f x ys | x <= 2 = head $ delete x ys %o A212193 | otherwise = f x' $ delete d ys where (x',d) = divMod x 3 %Y A212193 Cf. A007089, A067898 (decimal). %K A212193 nonn,base %O A212193 0,4 %A A212193 _Reinhard Zumkeller_, May 04 2012