This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212194 #14 Feb 08 2017 18:31:03 %S A212194 1,0,1,-5,8,-4,0,1,-16,112,-448,1120,-1791,1786,-1012,248,0,1,-33,510, %T A212194 -4898,32703,-160859,602408,-1749715,3975561,-7068408,9755858, %U A212194 -10265148,7968348,-4304712,1445104,-226720,0,1,-56,1508,-25992,321994,-3051871,23000726,-141421592,722137763,-3101089710 %N A212194 Triangle T(n,k), n>=1, 0<=k<=n^2, read by rows: row n gives the coefficients of the chromatic polynomial of the staggered hexagonal square grid graph SH_(n,n), highest powers first. %C A212194 T differs from A212162 first at (n,k) = (5,10): T(5,10) = -3101089710, A212162(5,10) = -3101089711. %C A212194 The staggered hexagonal square grid graph SH_(n,n) has n^2 = A000290(n) vertices and (n-1)*(3*n-1) = A045944(n-1) edges. The chromatic polynomial of SH_(n,n) has n^2+1 = A002522(n) coefficients. %H A212194 Alois P. Heinz, <a href="/A212194/b212194.txt">Rows n = 1..8, flattened</a> %H A212194 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chromatic_polynomial">Chromatic Polynomial</a> %e A212194 3 example graphs: o--o--o %e A212194 . | /|\ | %e A212194 . |/ | \| %e A212194 . o--o o--o--o %e A212194 . | /| | /|\ | %e A212194 . |/ | |/ | \| %e A212194 . o o--o o--o--o %e A212194 Graph: SH_(1,1) SH_(2,2) SH_(3,3) %e A212194 Vertices: 1 4 9 %e A212194 Edges: 0 5 16 %e A212194 The staggered hexagonal square grid graph SH_(2,2) has chromatic polynomial q^4 -5*q^3 +8*q^2 -4*q => row 2 = [1, -5, 8, -4, 0]. %e A212194 Triangle T(n,k) begins: %e A212194 1, 0; %e A212194 1, -5, 8, -4, 0; %e A212194 1, -16, 112, -448, 1120, -1791, ... %e A212194 1, -33, 510, -4898, 32703, -160859, ... %e A212194 1, -56, 1508, -25992, 321994, -3051871, ... , -3101089710, ... %e A212194 1, -85, 3520, -94620, 1855860, -28306676, ... %e A212194 1, -120, 7068, -272344, 7720110, -171656543, ... %e A212194 1, -161, 12782, -667058, 25738055, -783003395, ... %Y A212194 Columns 1-2 give: A000012, (-1)*A045944(n-1). %Y A212194 Row sums (for n>1) and last elements of rows give: A000004, row lengths give: A002522. %Y A212194 Cf. A000290, A212162, A212195. %K A212194 sign,tabf %O A212194 1,4 %A A212194 _Alois P. Heinz_, May 03 2012