This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212197 #15 Aug 16 2021 21:36:27 %S A212197 1,2,6,14,42,114,602,798,1806,5334,34314,101346,229362,4357878, %T A212197 9786714,12198858,168241542,185947566,231778302,524550894 %N A212197 Numbers k that divide the 3k-th Clausen number. %C A212197 The classical Clausen numbers are given in A141056. See A160014 for generalizations. Related sequences are A014117 and A106741. %H A212197 Thomas Clausen, <a href="http://adsabs.harvard.edu/abs/1840AN.....17R.351">Theorem. Lehrsatz aus einer Abhandlung ueber die Bernoullischen Zahlen</a>, Astr. Nachr. 17 (22) (1840), 351-352. %t A212197 (* This program is not convenient for more than 15 terms *) c[n_] := Sum[Boole[PrimeQ[d+1]]/(d+1), {d, Divisors[n]}] // Denominator; Reap[For[n = 1, n < 10^7, n++, If[Divisible[c[3*n], n], Print[n]; Sow[n]]]][[2, 1]] (* _Jean-François Alcover_, May 21 2013 *) %o A212197 (PARI) %o A212197 A212197_list(searchlimit) = %o A212197 { %o A212197 for (n=1, searchlimit, %o A212197 p = 1; %o A212197 fordiv(3*n, d, %o A212197 r = d + 1; %o A212197 if (isprime(r), p = p*r;) %o A212197 ); %o A212197 if (Mod(p, n) == 0, print1(n, ", ")); %o A212197 ); %o A212197 } %Y A212197 Cf. A014117, A027760, A106741, A141056, A160014. %K A212197 nonn,more %O A212197 1,2 %A A212197 _Peter Luschny_, May 05 2012