This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212208 #13 Feb 08 2017 18:31:31 %S A212208 1,0,1,-6,11,-6,0,1,-20,174,-859,2627,-5082,6048,-4023,1134,0,1,-42, %T A212208 825,-10054,85011,-528254,2491825,-9084089,25795983,-57031153, %U A212208 97292827,-125639547,118705077,-77301243,30931875,-5709042,0,1,-72,2492,-55183,877812 %N A212208 Triangle T(n,k), n>=1, 0<=k<=n^2, read by rows: row n gives the coefficients of the chromatic polynomial of the square diagonal grid graph DG_(n,n), highest powers first. %C A212208 The square diagonal grid graph DG_(n,n) has n^2 = A000290(n) vertices and 2*(n-1)*(2*n-1) = A002943(n-1) edges. The chromatic polynomial of DG_(n,n) has n^2+1 = A002522(n) coefficients. %H A212208 Alois P. Heinz, <a href="/A212208/b212208.txt">Rows n = 1..7, flattened</a> %H A212208 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chromatic_polynomial">Chromatic Polynomial</a> %e A212208 3 example graphs: o---o---o %e A212208 . |\ /|\ /| %e A212208 . | X | X | %e A212208 . |/ \|/ \| %e A212208 . o---o o---o---o %e A212208 . |\ /| |\ /|\ /| %e A212208 . | X | | X | X | %e A212208 . |/ \| |/ \|/ \| %e A212208 . o o---o o---o---o %e A212208 Graph: DG_(1,1) DG_(2,2) DG_(3,3) %e A212208 Vertices: 1 4 9 %e A212208 Edges: 0 6 20 %e A212208 The square diagonal grid graph DG_(2,2) equals the complete graph K_4 and has chromatic polynomial q*(q-1)*(q-2)*(q-3) = q^4 -6*q^3 +11*q^2 -6*q => row 2 = [1, -6, 11, -6, 0]. %e A212208 Triangle T(n,k) begins: %e A212208 1, 0; %e A212208 1, -6, 11, -6, 0; %e A212208 1, -20, 174, -859, 2627, -5082, ... %e A212208 1, -42, 825, -10054, 85011, -528254, ... %e A212208 1, -72, 2492, -55183, 877812, -10676360, ... %e A212208 1, -110, 5895, -205054, 5203946, -102687204, ... %e A212208 1, -156, 11946, -598491, 22059705, -637802510, ... %Y A212208 Columns 1-2 give: A000012, (-1)*A002943(n-1). %Y A212208 Row sums (for n>1) and last elements of rows give: A000004, row lengths give: A002522. %Y A212208 Cf. A000290, A212209. %K A212208 sign,tabf %O A212208 1,4 %A A212208 _Alois P. Heinz_, May 04 2012