This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212252 #14 Sep 05 2016 08:46:33 %S A212252 0,0,0,3,11,24,45,76,117,171,240,324,426,548,690,855,1045,1260,1503, %T A212252 1776,2079,2415,2786,3192,3636,4120,4644,5211,5823,6480,7185,7940, %U A212252 8745,9603,10516,11484,12510,13596,14742,15951,17225,18564,19971 %N A212252 Number of (w,x,y,z) with all terms in {1,...,n} and 3w=x+y+z+n+2. %C A212252 Also, the number of (w,x,y,z) with all terms in {1,...,n} and 3w=x+y+z-n-2. %C A212252 For a guide to related sequences, see A211795. %F A212252 a(n) = 3*a(n-1)-3*a(n-2)+2*a(n-3)-3*a(n-4)+3*a(n-5)-a(n-6). %F A212252 From _Benedict W. J. Irwin_, Sep 05 2016: (Start) %F A212252 a(n)=2/9-n/2-n^2/3+5*n^3/18-2/9*cos(2*n*Pi/3)+4*sin(2*n*Pi/3)/(9*sqrt(3)). %F A212252 G.f.: x^3*(3+2*x)/((x-1)^4*(1+x+x^2)). %F A212252 (End) %t A212252 t = Compile[{{n, _Integer}}, Module[{s = 0}, %t A212252 (Do[If[3 w == x + y + z + n + 2, s = s + 1], %t A212252 {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]]; %t A212252 Map[t[#] &, Range[0, 40]] (* A212252 *) %t A212252 (* _Peter J. C. Moses_, Apr 13 2012 *) %t A212252 Table[2/9-n/2-n^2/3+5n^3/18-2/9Cos[2 n Pi/3] + 4Sin[2 n Pi/3]/9/Sqrt[3], {n, 0, 20}] (* _Benedict W. J. Irwin_, Sep 05 2016 *) %Y A212252 Cf. A211795, A212251. %K A212252 nonn,easy %O A212252 0,4 %A A212252 _Clark Kimberling_, May 15 2012