This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212278 #15 Mar 26 2016 21:24:27 %S A212278 0,0,0,1,0,2,1,0,3,2,1,1,0,4,3,2,2,1,2,1,0,5,4,3,3,2,3,2,1,3,2,1,1,0, %T A212278 6,5,4,4,3,4,3,2,4,3,2,2,1,4,3,2,2,1,2,1,0,7,6,5,5,4,5,4,3,5,4,3,3,2, %U A212278 5,4,3,3,2,3,2,1,5,4,3,3,2,3,2,1,3,2,1,1,0,8 %N A212278 Number of adjacent pairs of zeros (possibly overlapping) in the representation of n in base of Fibonacci numbers (A014417). %C A212278 a(n) = 0 only if n = Fibonacci(k)-1. %H A212278 Alois P. Heinz, <a href="/A212278/b212278.txt">Table of n, a(n) for n = 0..10946</a> %e A212278 A014417(5) = 1000, two pairs of adjacent zeros, so a(5) = 2. %p A212278 F:= combinat[fibonacci]: %p A212278 b:= proc(n) option remember; local j; %p A212278 if n=0 then 0 %p A212278 else for j from 2 while F(j+1)<=n do od; %p A212278 b(n-F(j))+2^(j-2) %p A212278 fi %p A212278 end: %p A212278 a:= proc(n) local c, h, m, t; %p A212278 c, t, m:= 0, 1, b(n); %p A212278 while m>0 do %p A212278 h:= irem(m, 2, 'm'); %p A212278 if h=t and h=0 then c:=c+1 fi; %p A212278 t:=h %p A212278 od; c %p A212278 end: %p A212278 seq(a(n), n=0..150); # _Alois P. Heinz_, May 18 2012 %Y A212278 Cf. A000045, A003714, A014417, A007895, A102364. %K A212278 base,nonn %O A212278 0,6 %A A212278 _Alex Ratushnyak_, May 13 2012