This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212285 #12 May 13 2013 01:54:21 %S A212285 1,1,3,2,7,9,4,1,1,25,31,6,5,2,57,1,73,3,7,14,6,121,133,3,5,18,1,1, %T A212285 211,225,7,2,273,289,1,2,10,4,9,7,421,3,8,62,19,529,553,9,7,5,651,9, %U A212285 703,1,757,4,9,841,871,114,13,27,2,1,1,1089,11,146,1191,4,1261 %N A212285 Least k > 0 such that nk = x^3 + y^3 for nonnegative x and y. %C A212285 Broughan calls this theta(n) and proves that it exists for all n. %H A212285 Charles R Greathouse IV, <a href="/A212285/b212285.txt">Table of n, a(n) for n = 1..1000</a> %H A212285 Kevin A. Broughan, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Broughan/broughan25.html">Characterizing the Sum of Two Cubes</a>, J. Integer Seqs., Vol. 6, 2003. %H A212285 <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a> %F A212285 a(n) <= A212286(n) <= 2n^2 + 6, a(a(n)) <= n. %e A212285 3 is not the sum of two nonnegative cubes, nor is 6. But 9 = 2^3 + 1^3 and so a(3) = 9/3 = 3. %o A212285 (PARI) sumOfTwoCubes(n)=my(k1=ceil((n-1/2)^(1/3)), k2=floor((4*n+1/2)^(1/3)), L); fordiv(n,d,if(d>=k1 && d<=k2 && denominator(L=(d^2-n/d)/3)==1 && issquare(d^2-4*L), return(1))); 0 %o A212285 a(n)=forstep(k=n,2*n*(n^2+3),n,if(sumOfTwoCubes(k),return(k/n))) %Y A212285 Cf. A004999, A212286. %K A212285 nonn %O A212285 1,3 %A A212285 _Charles R Greathouse IV_, Jun 12 2012