A212286 Least k > 0 such that nk = x^3 + y^3 for nonnegative coprime x and y.
1, 3, 7, 7, 21, 4, 19, 1, 37, 31, 39, 5, 2, 57, 67, 73, 7, 7, 103, 6, 133, 133, 147, 157, 18, 7, 1, 211, 237, 7, 259, 273, 301, 1, 13, 10, 4, 9, 403, 421, 3, 8, 487, 19, 541, 553, 579, 11, 637, 651, 9, 703, 31, 757, 26, 9, 853, 871, 903, 13, 27, 2, 1027, 1, 1101, 11, 1159, 1191
Offset: 2
Keywords
Examples
4 is not the sum of two nonnegative cubes. 8 = 0^3 + 2^3, but 0 and 2 are not coprime. The least multiple of 4 that can be so represented is 28 = 1^3 + 3^3, so a(4) = 28/4.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 2..1000
- Kevin A. Broughan, Characterizing the Sum of Two Cubes, J. Integer Seqs., Vol. 6, 2003.
- Index entries for sequences related to sums of cubes
Programs
-
PARI
sumOfTwoCubes(n)=my(k1=ceil((n-1/2)^(1/3)), k2=floor((4*n+1/2)^(1/3)), L); fordiv(n,d,if(d>=k1 && d<=k2 && denominator(L=(d^2-n/d)/3)==1 && issquare(d^2-4*L), return(1))); 0 sumOfTwoRPCubes(n)=if(sumOfTwoCubes(n),if(vecmax(factor(n)[,2])<3,1,for(x=ceil((n\2)^(1/3)),(n+.5)^(1/3),if(gcd(n,x)==1&&ispower(n-x^3,3),return(1)));0),0) a(n)=forstep(k=n,2*n*(n^2+3),n,if(sumOfTwoRPCubes(k),return(k/n)))
Formula
a(n) <= 2n^2 + 6, a(a(n)) <= n.
Comments