cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212296 a(n) = numerator(1 + Sum_{k=1..n} n^2 / Product_{j=1..k} 4*j^2).

This page as a plain text file.
%I A212296 #45 Sep 27 2019 06:30:49
%S A212296 5,33,869,48449,1504375,124787549,119224713221,10003972882859,
%T A212296 9610660732622149,3811875515172994001,40741092389313992153,
%U A212296 1050927826884051298685761,707754011714996709527574437,184405400463251288725766546203,496687160874729261988243149308101
%N A212296 a(n) = numerator(1 + Sum_{k=1..n} n^2 / Product_{j=1..k} 4*j^2).
%H A212296 Charles R Greathouse IV, <a href="/A212296/b212296.txt">Table of n, a(n) for n = 1..225</a>
%e A212296 r(n) = 5/4, 33/16, 869/256, 48449/9216, 1504375/196608, 124787549/11796480, ....
%e A212296 From _Petros Hadjicostas_, Sep 26 2019: (Start)
%e A212296 a(3) = numerator(1 + 3^2/(4*1^2) + 3^2/(4*1^2 * 4*2^2) + 3^2/(4*1^2 * 4*2^2 * 4*3^2)) = numerator(1 + 9/4 + 9/64 + 9/2304) = numerator(869/256) = 869.
%e A212296 a(4) = numerator(1 + 4^2/(4*1^2) + 4^2/(4*1^2 * 4*2^2) + 4^2/(4*1^2 * 4*2^2 * 4*3^2) + 4^2/(4*1^2 * 4*2^2 * 4*3^2 * 4*4^2)) = numerator(1 + 16/4 + 16/64 + 16/2304 + 16/147456) = denominator(48449/9216) = 48449.
%e A212296 (End)
%p A212296 a := n -> numer(1 + add(n^2 / mul(4*j^2, j=1..k), k=1..n)):
%p A212296 seq(a(n), n=1..15); # _Peter Luschny_, Sep 26 2019
%t A212296 G[n_] := Module[{N=1, D=1}, Sum[N*=2*k-1; D*=2*k; (n/D)^2, {k, 1, n}] + 1]; a[n_] := Numerator[G[n]]; Array[a, 15] (* _Jean-François Alcover_, Sep 05 2015, translated from PARI *)
%o A212296 (PARI) G(n)=my(N=1,D=1); sum(k=1,n, N*=2*k-1; D*=2*k; (n/D)^2)+1
%o A212296 a(n)=numerator(G(n))
%o A212296 vector(15, n, a(n))
%Y A212296 Denominators are A212297.
%K A212296 nonn,frac
%O A212296 1,1
%A A212296 _Charles R Greathouse IV_, Jul 02 2012
%E A212296 Redefinition according to the data by _Peter Luschny_, Sep 26 2019