cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212334 Number of words, either empty or beginning with the first letter of the 4-ary alphabet, where each letter of the alphabet occurs n times and letters of neighboring word positions are equal or neighbors in the alphabet.

This page as a plain text file.
%I A212334 #42 Apr 06 2023 10:56:24
%S A212334 1,1,9,163,3593,87501,2266155,61211095,1704838665,48605519665,
%T A212334 1411522695509,41606511550803,1241591466423467,37435593955828069,
%U A212334 1138713916992923679,34901292375152457663,1076813644170756916745,33416749492077957930105,1042376218505671236116985
%N A212334 Number of words, either empty or beginning with the first letter of the 4-ary alphabet, where each letter of the alphabet occurs n times and letters of neighboring word positions are equal or neighbors in the alphabet.
%C A212334 Also the number of (4*n-1)-step walks on 4-dimensional cubic lattice from (1,0,0,0) to (n,n,n,n) with positive unit steps in all dimensions such that the absolute difference of the dimension indices used in consecutive steps is <= 1.
%C A212334 It appears that for primes p >= 5, a(p) == 1 (mod p^5). Cf. A352655. - _Peter Bala_, Dec 12 2021
%C A212334 Conjecture: for r >= 2, and all primes p >= 5, a(p^r) == a(p^(r-1)) (mod p^(3*r+3)). - _Peter Bala_, Oct 13 2022
%H A212334 Alois P. Heinz, <a href="/A212334/b212334.txt">Table of n, a(n) for n = 0..656</a>
%F A212334 a(n) ~ (1 + sqrt(2))^(4*n-1) / (2^(7/4) * (Pi*n)^(3/2)). - _Vaclav Kotesovec_, Aug 13 2013, simplified Apr 06 2022
%F A212334 From _Peter Bala_, Apr 17 2022: (Start)
%F A212334 a(n) = (1/12)*(A005259(n) + 7*A005259(n-1)) for n >= 1.
%F A212334 The supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and positive integers n and k.
%F A212334 a(n) = (1/3)*Sum_{k = 0..n} binomial(n,k)^2*binomial(n + k,k)^2*(2*n^2 - 3*k*n + 2*k^2)/(n + k)^2.
%F A212334 (24*n^3 - 102*n^2 + 148*n - 73)*n^3*a(n) = 4*(204*n^6 - 1173*n^5 + 2668*n^4 - 3065*n^3 + 1905*n^2 - 634*n + 86)*a(n-1) - (24*n^3 - 30*n^2 + 16*n-3)*(n - 2)^3*a(n-2) with a(0) = a(1) = 1. (End)
%F A212334 a(n) = Sum_{k=0..n-1} binomial(n,k)*binomial(n-1,k)*binomial(n+k-1,k)^2 for n>=1. - _Peter Bala_, Mar 22 2023
%p A212334 a:= proc(n) option remember; `if`(n<3, [1, 1, 9][n+1],
%p A212334       ((26682*n^4 -102687*n^3 +149385*n^2 -109413*n +31101) *a(n-1)
%p A212334       +(-161058*n^4 +1392915*n^3 -4418826*n^2 +6030348*n -2931516) *a(n-2)
%p A212334       +(4718*n^4 -47957*n^3 +176841*n^2 -275751*n +148365) *a(n-3)) /
%p A212334       (n^3 *(646*n -1057)))
%p A212334     end:
%p A212334 seq(a(n), n=0..30);
%t A212334 a[n_] := a[n] = If[n < 3, {1, 1, 9}[[n + 1]], ((26682 n^4 - 102687 n^3 + 149385 n^2 - 109413 n + 31101) a[n-1] + (-161058 n^4 + 1392915 n^3 - 4418826 n^2 + 6030348 n - 2931516)a[n-2] + (4718 n^4 - 47957 n^3 + 176841 n^2 - 275751 n + 148365)a[n-3])/(n^3 (646 n - 1057))];
%t A212334 a /@ Range[0, 30] (* _Jean-François Alcover_, May 14 2020, after Maple *)
%Y A212334 Column k = 4 of A208673.
%Y A212334 Cf. A005259, A352655.
%K A212334 nonn
%O A212334 0,3
%A A212334 _Alois P. Heinz_, Aug 07 2012