This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212337 #41 Feb 21 2025 12:31:32 %S A212337 1,8,42,184,731,2736,9844,34448,118101,398584,1328606,4384392, %T A212337 14348911,46633952,150663528,484275616,1549681961,4939611240, %U A212337 15690529810,49686677720,156905298051,494251688848,1553362450652,4871909504304,15251194969981,47659984281176 %N A212337 Expansion of 1/(1-4*x+3*x^2)^2. %C A212337 Partial sums of A014915. - _Bruno Berselli_, Oct 26 2012 %C A212337 Convolution of A003462(n+1) with itself. - _Philippe Deléham_, Mar 07 2014 %H A212337 Bruno Berselli, <a href="/A212337/b212337.txt">Table of n, a(n) for n = 0..1000</a> %H A212337 Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, <a href="https://arxiv.org/abs/2501.06675">Chip-Firing on Infinite k-ary Trees</a>, arXiv:2501.06675 [math.CO], 2025. See p. 14. %H A212337 Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, <a href="https://arxiv.org/abs/2405.05357">Flattened Catalan Words</a>, arXiv:2405.05357 [math.CO], 2024. See p. 16. %H A212337 Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, <a href="http://arxiv.org/abs/1201.6243">Marked mesh patterns in 132-avoiding permutations I,</a> arXiv:1201.6243v1 [math.CO], 2012. See (16). %H A212337 Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, <a href="http://www.emis.de/journals/INTEGERS/papers/p16/p16.Abstract.html">Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II</a>, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16. (<a href="http://arxiv.org/abs/1302.2274">arXiv:1302.2274</a>) %H A212337 Mark Shattuck, <a href="https://arxiv.org/abs/2502.10661">Enumeration of consecutive patterns in flattened Catalan words</a>, arXiv:2502.10661 [math.CO], 2025. See pp. 3, 20. %H A212337 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8,-22,24,-9). %F A212337 From _Bruno Berselli_, May 11 2012: (Start) %F A212337 G.f.: 1/((1-x)^2*(1-3*x)^2). %F A212337 a(n) = 1+n*(1+9*3^n)/4. (End) %F A212337 E.g.f.: exp(x)*(4 + x + 27*exp(2*x)*x)/4. - _Stefano Spezia_, May 14 2024 %e A212337 a(0) = 1*1 = 1; %e A212337 a(1) = 1*4 + 4*1 = 8; %e A212337 a(2) = 1*13 + 4*4 + 13*1 = 42; %e A212337 a(3) = 1*40 + 4*13 + 13*4 + 40*1 = 184; %e A212337 a(4) = 1*121 + 4*40 + 13*13 + 40*4 + 121*1 = 731; etc. - _Philippe Deléham_, Mar 07 2014 %t A212337 Table[1 + n ((1 + 9 3^n)/4), {n, 0, 25}] (* _Bruno Berselli_, May 11 2012 *) %t A212337 CoefficientList[Series[1/(1-4x+3x^2)^2,{x,0,30}],x] (* or *) LinearRecurrence[ {8,-22,24,-9},{1,8,42,184},30] (* _Harvey P. Dale_, Jun 14 2020 *) %o A212337 (Magma) m:=26; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)^2*(1-3*x)^2))); // _Bruno Berselli_, May 11 2012 %o A212337 (PARI) Vec(1/(1-4*x+3*x^2)^2 + O(x^100)) \\ _Altug Alkan_, Nov 01 2015 %Y A212337 Cf. A003462, A014915. %K A212337 nonn,easy %O A212337 0,2 %A A212337 _N. J. A. Sloane_, May 09 2012