cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212338 Sequence of coefficients of x in marked mesh pattern generating function Q_{n,132}^(0,0,2,0)(x).

Original entry on oeis.org

2, 7, 21, 53, 124, 273, 577, 1181, 2358, 4614, 8880, 16854, 31612, 58691, 108003, 197203, 357596, 644463, 1155059, 2059897, 3656988, 6465660, 11388480, 19990140, 34976870, 61019071, 106160481, 184228193, 318948124, 550962717, 949781269, 1634103701, 2806342578
Offset: 3

Views

Author

N. J. A. Sloane, May 09 2012

Keywords

Comments

Apparently the number of Dyck n-paths that have n-2 peaks after changing each valley to a peak by the transformation DU -> UD. E.g., the Dyck 3-paths UUUDDD and UUDUDD have 1 peak after changing DU to UD so a(3) = 2. - David Scambler, Sep 03 2012

Crossrefs

Cf. Column 2 of A091533. Partial sums of A036681.

Programs

Formula

g.f. -x^3*(2+x) / (x^2+x-1)^3, i.e., a(n) = 2*A001628(n-3) + A001628(n-4). - R. J. Mathar, Jun 27 2012
a(n) = a(n-1) + a(n-2) + A067331(n-3). E.g., a(5) = 21 = 7 + 2 + 12. - David Scambler, Sep 03 2012