cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212346 Sequence of coefficients of x^0 in marked mesh pattern generating function Q_{n,132}^(0,4,0,0)(x).

Original entry on oeis.org

1, 1, 2, 5, 14, 28, 48, 75, 110, 154, 208, 273, 350, 440, 544, 663, 798, 950, 1120, 1309, 1518, 1748, 2000, 2275, 2574, 2898, 3248, 3625, 4030, 4464, 4928, 5423, 5950, 6510, 7104, 7733
Offset: 0

Views

Author

N. J. A. Sloane, May 09 2012

Keywords

Comments

Conjecture stated in Formula holds through a(35).

Programs

  • Mathematica
    QQ0[t, x] = (1 - (1-4*x*t)^(1/2)) / (2*x*t); QQ1[t, x] = 1/(1 - t*QQ0[t, x]); QQ2[t, x] = (1 + t*(QQ1[t, x] - QQ0[t, x]))/(1 - t*QQ0[t, x]); QQ3[t, x] = (1 + t*(QQ2[t, x] - QQ0[t, x] + t*(QQ1[t, x] - QQ0[t,  x])))/(1 - t*QQ0[t, x]); QQ4[t, x] = (1 + t*(QQ3[t, x] - QQ0[t, x] + t*(QQ2[t, x] - QQ0[t, x]) + (2*t^2*(QQ1[t, x] - QQ0[t, x]))))/(1 - t*QQ0[t, x]); q=Simplify[Series[QQ4[t, x], {t, 0, 35}]]; CoefficientList[q /. x -> 0, t]  (* Robert Price, Jun 04 2012 *)

Formula

Conjecture: this appears to equal (n+3)(n^2-4)/6 for n >= 3, see A129936.
Conjectures from Colin Barker, Feb 11 2015: (Start)
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>6.
G.f.: (2*x^6-5*x^5+3*x^4-x^3+4*x^2-3*x+1) / (x-1)^4.
(End)

Extensions

a(10)-a(35) from Robert Price, Jun 02 2012