A212357 Coefficients for the cycle index polynomial for the cyclic group C_n multiplied by n, n>=1, read as partition polynomial.
1, 1, 1, 2, 0, 1, 2, 0, 1, 0, 1, 4, 0, 0, 0, 0, 0, 1, 2, 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
n\k 1 2 3 4 5 6 7 8 9 10 11 ... 1: 1 2: 1 1 3: 2 0 1 4: 2 0 1 0 1 5: 4 0 0 0 0 0 1 6: 2 0 0 2 0 0 1 0 0 0 1 ... See the link for rows n=1..8 and the Z(C_n) polynomials for n=1..15. n=6: Z(C_6) = (2*x[6] + 2*x[3]^2 + 1*x[2]^3 + x[1]^6)/6, because the relevant partitions of 6 appear for k=1: 6, k=4: 3^2, k=7: 2^3 and k=11: 1^6
References
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 36, (2.2.10).
Links
- Wolfdieter Lang, Cycle index Z(C_n), n=1..15.
Formula
The cycle index polynomial for the cyclic group C_n is Z(C_n) = (a(n,k)*x[1]^(e[k,1])*x[2]^(e[k,2])*...*x[n]^(e[k,n]))/n, n>=1, if the k-th partition of n in Abramowitz-Stegun order is 1^(e[k,1]) 2^(e[k,2]) ... n^(e[k,n]), where a part j with vanishing exponent e[k,j] has to be omitted. The n dependence of the exponents has been suppressed. See the comment above for the Z(C_n) formula and the link for these polynomials for n=1..15.
a(n,k) is the coefficient the term of n*Z(C_n) corresponding to the k-th partition of n in Abramowitz-Stegun order. a(n,k) = 0 if there is no such term in Z(C_n).
Comments