A212358 Coefficients of the cycle index polynomial for the alternating group A_n multiplied by n!/2, n>=1, read as partition polynomial.
1, 0, 1, 2, 0, 1, 0, 8, 3, 0, 1, 24, 0, 0, 20, 15, 0, 1, 0, 144, 90, 40, 0, 0, 0, 40, 45, 0, 1, 720, 0, 0, 0, 504, 630, 280, 210, 0, 0, 0, 70, 105, 0, 1, 0, 5760, 3360, 2688, 1260, 0, 0, 0, 0, 0, 1344, 2520, 1120, 1680, 105, 0, 0, 0, 112, 210, 0, 1
Offset: 1
Examples
Triangle begins: n\k 1 2 3 4 5 6 7 8 9 10 11 ... 1: 1 2: 0 1 3: 2 0 1 4: 0 8 3 0 1 5: 24 0 0 20 15 0 1 6: 0 144 90 40 0 0 0 40 45 0 1 ... See the link for rows n=1..10 and the Z(A_n) polynomials for n=1..13. n=6: Z(A_6) = 2*(144*x[1]*x[5] + 90*x[2]*x[4] + 40*x[3]^2 + 40*x[1]^3*x[3] + 45*x[1]^2*x[2]^2 + 1*x[1]^6)/6!, because the relevant partitions of 6 appear for k=2: 1,5; k=3: 2,4; k=4: 3^2; k=8: 1^3,3; k=9: 1^2,2^2 and k=11: 1^6. Thus, Z(A_6) = (2/5)*x[1]*x[5] + (1/4)*x[2]*x[4] + (1/9)*x[3]^2 + (1/9)*x[1]^3*x[3] + (1/8)*x[1]^2*x[2]^2 + (1/360)*x[1]^6.
References
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 36, (2.2.6).
Links
- Wolfdieter Lang, Rows n=1..10, Z(A_n) for n=1..13.
- Eric Weisstein's World of Mathematics, Alternating Group.
Formula
The cycle index polynomial for the alternating group A_n is Z(A_n) = (2*a(n,k)*x[1]^(e[k,1])*x[2]^(e[k,2])*...*x[n]^(e[k,n]))/n!, n>=1, if the k-th partition of n in Abramowitz-Stegun order is 1^(e[k,1]) 2^(e[k,2]) ... n^(e[k,n]), where a part j with vanishing exponent e[k,j] has to be omitted. The n dependence of the exponents has been suppressed. See the comment above for the Z(A_n) formula, and the link for these polynomials for n=1..13.
a(n,k) is the coefficient the term of (n!/2)*Z(A_n) corresponding to the k-th partition of n in Abramowitz-Stegun order. a(n,k) = 0 if there is no such term in Z(A_n).
Comments