cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212362 Triangle by rows, binomial transform of the beheaded Pascal's triangle A074909.

This page as a plain text file.
%I A212362 #31 Sep 08 2022 08:46:02
%S A212362 1,2,2,4,7,3,8,19,15,4,16,47,52,26,5,32,111,155,110,40,6,64,255,426,
%T A212362 385,200,57,7,128,575,1113,1211,805,329,77,8,256,1279,2808,3556,2856,
%U A212362 1498,504,100,9,512,2815,6903,9948,9324,5922,2562,732,126,10
%N A212362 Triangle by rows, binomial transform of the beheaded Pascal's triangle A074909.
%C A212362 Row sums of the triangle inverse = A027641/A027642, the Bernoulli numbers; (1, -1/2, 1/6, 0, -1/30,...)
%H A212362 G. C. Greubel, <a href="/A212362/b212362.txt">Rows n = 0..50 of the triangle, flattened</a>
%F A212362 Binomial transform of the beheaded Pascal's triangle (A074909) as a matrix. (The beheaded Pascal matrix deletes the rightmost border of 1's.)
%F A212362 From _G. C. Greubel_, Aug 05 2021: (Start)
%F A212362 T(n, k) = Sum_{j=0..n} binomial(n, j)*binomial(j+1, k) - binomial(n, k-1), with T(n, 0) = 2^n.
%F A212362 T(n, k) = 2^(n-k)*binomial(n+1, k) + (2^(n-k) - 1)*binomial(n, k-1).
%F A212362 Sum_{k=0..n} T(n, k) = A027649(n).
%F A212362 Sum_{k=0..floor(n/2)} T(n-k, k) = A106515(n). (End)
%e A212362 First few rows of the triangle are:
%e A212362     1;
%e A212362     2,    2;
%e A212362     4,    7,    3;
%e A212362     8,   19,   15,    4
%e A212362    16,   47,   52,   26,    5;
%e A212362    32,  111,  155,  110,   40,    6;
%e A212362    64,  255,  426,  385,  200,   57,   7;
%e A212362   128,  575, 1113, 1211,  805,  329,  77,   8;
%e A212362   256, 1279, 2808, 3556, 2856, 1498, 504, 100, 9;
%e A212362   ...
%p A212362 A212362 := proc(n,k)
%p A212362         add( binomial(n,i)*A074909(i,k),i=0..n) ;
%p A212362 end proc: # _R. J. Mathar_, Aug 03 2015
%t A212362 T[n_, k_]= 2^(n-k)*Binomial[n+1, k] + (2^(n-k) -1)*Binomial[n, k-1];
%t A212362 Table[T[n, k] , {n,0,12}, {k,0,n}] //Flatten (* _G. C. Greubel_, Aug 05 2021 *)
%o A212362 (Magma)
%o A212362 A074909:= func< n,k | k lt 0 or k gt n select 0 else Binomial(n+1, k) >;
%o A212362 A212362:= func< n,k | (&+[ Binomial(n,j)*A074909(j, k) : j in [0..n]]) >;
%o A212362 [A212362(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Aug 05 2021
%o A212362 (Sage)
%o A212362 def T(n, k): return 2^(n-k)*binomial(n+1, k) + (2^(n-k) - 1)*binomial(n, k-1)
%o A212362 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Aug 05 2021
%Y A212362 Cf. A074909, A027641/A027642, A027649 (row sums), A006589 (2nd column), A106515.
%K A212362 nonn,tabl
%O A212362 0,2
%A A212362 _Gary W. Adamson_, Jun 29 2012
%E A212362 a(22) corrected by _G. C. Greubel_, Aug 05 2021