This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212362 #31 Sep 08 2022 08:46:02 %S A212362 1,2,2,4,7,3,8,19,15,4,16,47,52,26,5,32,111,155,110,40,6,64,255,426, %T A212362 385,200,57,7,128,575,1113,1211,805,329,77,8,256,1279,2808,3556,2856, %U A212362 1498,504,100,9,512,2815,6903,9948,9324,5922,2562,732,126,10 %N A212362 Triangle by rows, binomial transform of the beheaded Pascal's triangle A074909. %C A212362 Row sums of the triangle inverse = A027641/A027642, the Bernoulli numbers; (1, -1/2, 1/6, 0, -1/30,...) %H A212362 G. C. Greubel, <a href="/A212362/b212362.txt">Rows n = 0..50 of the triangle, flattened</a> %F A212362 Binomial transform of the beheaded Pascal's triangle (A074909) as a matrix. (The beheaded Pascal matrix deletes the rightmost border of 1's.) %F A212362 From _G. C. Greubel_, Aug 05 2021: (Start) %F A212362 T(n, k) = Sum_{j=0..n} binomial(n, j)*binomial(j+1, k) - binomial(n, k-1), with T(n, 0) = 2^n. %F A212362 T(n, k) = 2^(n-k)*binomial(n+1, k) + (2^(n-k) - 1)*binomial(n, k-1). %F A212362 Sum_{k=0..n} T(n, k) = A027649(n). %F A212362 Sum_{k=0..floor(n/2)} T(n-k, k) = A106515(n). (End) %e A212362 First few rows of the triangle are: %e A212362 1; %e A212362 2, 2; %e A212362 4, 7, 3; %e A212362 8, 19, 15, 4 %e A212362 16, 47, 52, 26, 5; %e A212362 32, 111, 155, 110, 40, 6; %e A212362 64, 255, 426, 385, 200, 57, 7; %e A212362 128, 575, 1113, 1211, 805, 329, 77, 8; %e A212362 256, 1279, 2808, 3556, 2856, 1498, 504, 100, 9; %e A212362 ... %p A212362 A212362 := proc(n,k) %p A212362 add( binomial(n,i)*A074909(i,k),i=0..n) ; %p A212362 end proc: # _R. J. Mathar_, Aug 03 2015 %t A212362 T[n_, k_]= 2^(n-k)*Binomial[n+1, k] + (2^(n-k) -1)*Binomial[n, k-1]; %t A212362 Table[T[n, k] , {n,0,12}, {k,0,n}] //Flatten (* _G. C. Greubel_, Aug 05 2021 *) %o A212362 (Magma) %o A212362 A074909:= func< n,k | k lt 0 or k gt n select 0 else Binomial(n+1, k) >; %o A212362 A212362:= func< n,k | (&+[ Binomial(n,j)*A074909(j, k) : j in [0..n]]) >; %o A212362 [A212362(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Aug 05 2021 %o A212362 (Sage) %o A212362 def T(n, k): return 2^(n-k)*binomial(n+1, k) + (2^(n-k) - 1)*binomial(n, k-1) %o A212362 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Aug 05 2021 %Y A212362 Cf. A074909, A027641/A027642, A027649 (row sums), A006589 (2nd column), A106515. %K A212362 nonn,tabl %O A212362 0,2 %A A212362 _Gary W. Adamson_, Jun 29 2012 %E A212362 a(22) corrected by _G. C. Greubel_, Aug 05 2021