This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212386 #26 Apr 15 2017 00:46:41 %S A212386 1,1,1,1,1,1,1,2,9,37,121,331,793,1718,3454,6646,12841,26589,61813, %T A212386 158918,426401,1134431,2914055,7171539,16967745,39008002,88529366, %U A212386 202057561,471422866,1133448790,2799775102,7026467132,17684574313,44192085565,109081884957 %N A212386 Number of Dyck n-paths all of whose ascents have lengths equal to 1 (mod 6). %C A212386 Lengths of descents are unrestricted. %H A212386 Alois P. Heinz, <a href="/A212386/b212386.txt">Table of n, a(n) for n = 0..1000</a> %H A212386 Vaclav Kotesovec, <a href="http://oeis.org/A212382/a212382.pdf">Asymptotic of subsequences of A212382</a> %F A212386 G.f. satisfies: A(x) = 1+x*A(x)/(1-(x*A(x))^6). %F A212386 a(n) ~ s^2 / (n^(3/2) * r^(n-1/2) * sqrt(2*Pi*p*(s-1)*(1+s/(1+p*(s-1))))), where p = 6 and r = 0.3925132712580446244..., s = 1.876653786643058101... are roots of the system of equations r = p*(s-1)^2 / (s*(1-p+p*s)), (r*s)^p = (s-1-r*s)/(s-1). - _Vaclav Kotesovec_, Jul 16 2014 %F A212386 a(n) = Sum_{k=0..n} (binomial(5*k-4*n-1,n-k)*binomial(n+1,6*k-5*n))/(n+1). - _Vladimir Kruchinin_, Mar 05 2016 %e A212386 a(0) = 1: the empty path. %e A212386 a(1) = 1: UD. %e A212386 a(7) = 2: UDUDUDUDUDUDUD, UUUUUUUDDDDDDD. %e A212386 a(8) = 9: UDUDUDUDUDUDUDUD, UDUUUUUUUDDDDDDD, UUUUUUUDDDDDDDUD, UUUUUUUDDDDDDUDD, UUUUUUUDDDDDUDDD, UUUUUUUDDDDUDDDD, UUUUUUUDDDUDDDDD, UUUUUUUDDUDDDDDD, UUUUUUUDUDDDDDDD. %p A212386 b:= proc(x, y, u) option remember; %p A212386 `if`(x<0 or y<x, 0, `if`(x=0 and y=0, 1, b(x, y-1, true)+ %p A212386 `if`(u, add (b(x-(6*t+1), y, false), t=0..(x-1)/6), 0))) %p A212386 end: %p A212386 a:= n-> b(n$2, true): %p A212386 seq(a(n), n=0..40); %p A212386 # second Maple program %p A212386 a:= n-> coeff(series(RootOf(A=1+x*A/(1-(x*A)^6), A), x, n+1), x, n): %p A212386 seq(a(n), n=0..40); %t A212386 a[n_] := Sum[Binomial[5k-4n-1, n-k]*Binomial[n+1, 6k-5n], {k, 0, n}]/(n+1); %t A212386 Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Apr 03 2017, after _Vladimir Kruchinin_ *) %o A212386 (Maxima) %o A212386 a(n):=sum(binomial(5*k-4*n-1, n-k)*binomial(n+1, 6*k-5*n), k, 0, n)/(n+1); /* _Vladimir Kruchinin_, Mar 05 2016 */ %Y A212386 Column k=6 of A212382. %K A212386 nonn %O A212386 0,8 %A A212386 _Alois P. Heinz_, May 12 2012