cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212394 Decimal expansion of constant C = maximum value that sigma(n)*log(n^2)/n^2 reaches where sigma(n) = (sum of primes <= n), A034387.

Original entry on oeis.org

1, 3, 5, 0, 2, 2, 3, 3, 6, 8, 7, 3, 2, 2, 5, 8, 2, 1, 1, 7, 0, 5, 7, 5, 4, 9, 6, 4, 8, 3, 8, 1, 2, 4, 7, 1, 0, 3, 6, 0, 4, 2, 6, 1, 3, 8, 8, 9, 3, 5, 3, 6, 3, 3, 4, 8, 4, 9, 3, 7, 2, 7, 5, 7, 0, 9, 9, 5, 4, 5, 2, 1, 0, 8, 8, 9, 1, 9, 0, 9, 2, 0, 5, 0, 5, 7, 2, 2, 2, 2, 3, 5, 0, 9, 9, 5, 1, 6, 7, 2
Offset: 1

Views

Author

Frank M Jackson, May 14 2012

Keywords

Comments

From the prime number theorem it can be shown that the Prime sums function sigma(n) = (sum of primes <= n) ~ n^2/log(n^2). Consequently, the function sigma(n)*log(n^2)/n^2 tends to 1 as n tends to infinity, however it has a maximum value of 1.3502233687.... when n=7. In precise terms this constant is 34*log(7)/49 and it provides an upper bound for sigma(n), i.e. sigma(n) <= (34*log(7)/49)*n^2/log(n^2) for all n > 1.

Examples

			1.350223368732258211705754964838124710360426138...
		

Crossrefs

Cf. A034387.

Programs

  • Mathematica
    table=Table[Sum[Prime[k], {k, 1, PrimePi[n]}]/(n^2/(2 Log[n])), {n, 2, 10^4}]; max=Max[table]; n=1; While[table[[n]]!=max, n++]; Print[N[max, 100], " at n = ", n+1]
  • PARI
    log(7)*34/49 \\ Charles R Greathouse IV, May 14 2012

Formula

The maximum value for sigma(n)*log(n^2)/n^2 occurs at n = 7, so C = 34*log(7)/49.