cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212398 Number of binary arrays of length n+7 with no more than 4 ones in any length 8 subsequence (=50% duty cycle).

Original entry on oeis.org

163, 291, 527, 959, 1747, 3179, 5769, 10425, 18729, 33706, 60797, 109800, 198415, 358592, 647959, 1170415, 2113372, 3815438, 6888722, 12439093, 22463681, 40568913, 73266801, 132315810, 238948339, 431506179, 779231793, 1407175435
Offset: 1

Views

Author

R. H. Hardin May 14 2012

Keywords

Comments

Column 4 of A212402

Examples

			Some solutions for n=3
..0....0....1....0....0....0....1....0....0....0....1....1....0....1....1....0
..1....0....0....0....0....0....0....0....0....1....0....0....0....1....0....0
..1....0....1....0....1....1....0....0....0....1....1....1....0....0....0....0
..0....1....0....1....0....0....0....0....0....0....0....0....0....1....0....0
..0....0....0....0....0....1....1....1....0....1....1....1....0....0....0....0
..0....0....1....0....1....0....1....0....1....0....0....0....0....0....1....1
..0....1....1....1....1....0....0....0....1....1....0....1....0....1....0....0
..0....0....0....0....0....0....0....1....1....0....1....0....0....0....1....0
..1....1....0....0....0....1....1....0....0....0....1....0....0....1....1....1
..0....0....1....0....0....1....1....0....1....1....0....1....0....1....1....1
		

Formula

Empirical: a(n) = a(n-1) +a(n-2) +a(n-4) -a(n-6) +3*a(n-7) +8*a(n-8) -8*a(n-10) -8*a(n-11) -10*a(n-12) -5*a(n-13) +8*a(n-14) -2*a(n-15) -28*a(n-16) -15*a(n-17) +25*a(n-18) +24*a(n-19) +28*a(n-20) +24*a(n-21) -19*a(n-22) -18*a(n-23) +51*a(n-24) +40*a(n-25) -55*a(n-26) -16*a(n-27) -55*a(n-28) -45*a(n-29) +51*a(n-30) +36*a(n-31) -61*a(n-32) -45*a(n-33) +70*a(n-34) -16*a(n-35) +67*a(n-36) +40*a(n-37) -70*a(n-38) -19*a(n-39) +56*a(n-40) +24*a(n-41) -58*a(n-42) +24*a(n-43) -56*a(n-44) -15*a(n-45) +56*a(n-46) -2*a(n-47) -28*a(n-48) -5*a(n-49) +28*a(n-50) -8*a(n-51) +28*a(n-52) -28*a(n-54) +3*a(n-55) +8*a(n-56) -8*a(n-58) -8*a(n-60) +a(n-61) +8*a(n-62) -a(n-64) +a(n-66) +a(n-68) -a(n-70)