This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212415 #21 Jul 31 2023 11:03:30 %S A212415 0,0,3,17,55,135,280,518,882,1410,2145,3135,4433,6097,8190,10780, %T A212415 13940,17748,22287,27645,33915,41195,49588,59202,70150,82550,96525, %U A212415 112203,129717,149205,170810,194680,220968,249832,281435,315945 %N A212415 Number of (w,x,y,z) with all terms in {1,...,n} and w<x>=y<=z. %C A212415 For a guide to related sequences, see A211795. %C A212415 Partial sums of A162147. - _J. M. Bergot_, Jun 21 2013 %H A212415 G. C. Greubel, <a href="/A212415/b212415.txt">Table of n, a(n) for n = 0..1000</a> %H A212415 Jose Manuel Garcia Calcines, Luis Javier Hernandez Paricio, and Maria Teresa Rivas Rodriguez, <a href="https://arxiv.org/abs/2307.13749">Semi-simplicial combinatorics of cyclinders and subdivisions</a>, arXiv:2307.13749 [math.CO], 2023. See p. 25. %H A212415 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A212415 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). %F A212415 From _Bruno Berselli_, May 30 2012: (Start) %F A212415 G.f.: x^2*(3+2*x)/(1-x)^5. %F A212415 a(n) = (n-1)*n*(n+1)*(5*n+2)/24. (End) %F A212415 E.g.f.: x^2*(36 + 32*x + 5*x^2)*exp(x)/24. - _G. C. Greubel_, Jul 11 2019 %e A212415 a(3) counts these (w,x,y,z): (1,2,2,2), (1,2,2,3), (1,3,3,3). %t A212415 t = Compile[{{n, _Integer}}, Module[{s = 0}, %t A212415 (Do[If[w < x >= y <= z, s = s + 1], %t A212415 {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]]; %t A212415 Map[t[#] &, Range[0, 40]] (* A212415 *) %t A212415 Table[n*(5*n+2)*(n^2-1)/4!, {n,0,40}] (* _G. C. Greubel_, Jul 11 2019 *) %o A212415 (PARI) vector(40, n, n--; n*(5*n+2)*(n^2-1)/4!) \\ _G. C. Greubel_, Jul 11 2019 %o A212415 (Magma) [n*(5*n+2)*(n^2-1)/24: n in [0..40]]; // _G. C. Greubel_, Jul 11 2019 %o A212415 (Sage) [n*(5*n+2)*(n^2-1)/24 for n in (0..40)] # _G. C. Greubel_, Jul 11 2019 %o A212415 (GAP) List([0..40], n-> n*(5*n+2)*(n^2-1)/24); # _G. C. Greubel_, Jul 11 2019 %Y A212415 Cf. A211795. %K A212415 nonn,easy %O A212415 0,3 %A A212415 _Clark Kimberling_, May 19 2012