cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212420 Known primes such that there are no pairwise coprime solutions to the Diophantine equation of the form x^3 + y^3 = p^a z^n with a >= 1 an integer and n >= p^(2p) prime.

Original entry on oeis.org

53, 83, 149, 167, 173, 199, 223, 227, 233, 263, 281, 293, 311, 347, 353, 359, 389, 401, 419, 443, 449, 461, 467, 479, 487, 491, 563, 569, 571, 587, 599, 617, 641, 643, 659, 719, 727, 739, 743, 751, 809, 811, 823, 827, 829, 839, 859, 881, 887, 907, 911, 929, 941, 947, 953, 977, 983
Offset: 1

Views

Author

Carmen Bruni, May 15 2012

Keywords

Comments

These primes are the prime numbers p greater than 3 such that for every elliptic curves with conductor of the form 18p, 36p, or 72p we have that 4 does not divide the order of the torsion subgroup over the rationals but at least one curve with 2 dividing this order, such that there is a prime q congruent to 1 modulo 6 such that 4 does not divide the order of the torsion subgroup over the finite field of size q.