This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212429 #50 Oct 14 2019 11:36:46 %S A212429 1,1,2,4,48,96,1152,2304,276480,552960,6635520,13271040,33443020800, %T A212429 66886041600,802632499200,1605264998400,385263599616000, %U A212429 770527199232000,194172854206464000,388345708412928000,512616335105064960000,1025232670210129920000 %N A212429 a(n) is the LCM of denominators of polynomials of degree n which are integer-valued on primes together with their first divided differences. %C A212429 a(n) is also the n-th Bhargava's factorial n_P^{{1}} of the set P of primes with respect to the first divided difference. %H A212429 Alois P. Heinz, <a href="/A212429/b212429.txt">Table of n, a(n) for n = 1..170</a> %H A212429 M. Bhargava, <a href="https://doi.org/10.1090/S0894-0347-09-00638-9">On P-orderings, Integer-Valued Polynomials, and Ultrametric Analysis</a>, J. Amer. Math. Soc., 22 (2009), 963-993. %H A212429 J. L. Chabert, <a href="http://www.lamfa.u-picardie.fr/chabert/AboutPolynomials.pdf">About polynomials whose divided differences are integer-valued on prime numbers</a>, ICM 2012 Proceedings, vol. I, pp. 1-7. Complete <a href="http://icm.uaeu.ac.ae/pdf/TomeI.pdf">proceedings</a> (warning: file size is 26MB). %F A212429 a(n) = Prod_{p prime} p^w_p(n-1) where w_p(n) = Sum_{k>=0} floor(n / ((p-1)*p^k)) - t_{p,n} and p^(t_{p,n}-1) <= n/(p-1) < p^t_{p,n}. %e A212429 a(5) = 48 because f(x) = (x-1)(x-2)(x-3)(x-5)(x-7)/48 satisfies f(p) and (f(p)-f(q))/(p-q) are integers for all primes p,q. %p A212429 a:= proc(n) local i, p, wp, r; %p A212429 r:=1; %p A212429 for i do p:= ithprime(i); %p A212429 wp:= p^(w(p,n-1)); %p A212429 if wp=1 then break fi; %p A212429 r:= r*wp %p A212429 od; r %p A212429 end: %p A212429 w:= proc(p, n) local d, k, r; %p A212429 r:= 0; %p A212429 for k from 0 do d:= floor(n/((p-1)*p^k)); %p A212429 if d=0 then break fi; %p A212429 r:= r+d; %p A212429 od; %p A212429 r -t(n,p) %p A212429 end: %p A212429 t:= proc(n, p) local h, q; %p A212429 q:= n/(p-1); %p A212429 for h from 0 while q>= p^h do od; h %p A212429 end: %p A212429 seq (a(n), n=1..30); # _Alois P. Heinz_, Jun 25 2012 %t A212429 a[n_] := Module[{i, p, wp, r}, r = 1; For[i = 1, True, i++, p = Prime[i]; wp = p^w[p, n - 1]; If[wp == 1, Break[]]; r = r*wp]; r]; %t A212429 w[p_, n_] := Module[{d, k, r}, r = 0; For[k = 0, True, k++, d = Floor[n/((p - 1)*p^k)]; If[d == 0, Break[]]; r = r + d]; r - t[n, p]]; %t A212429 t[n_, p_] := Module[{h, q}, q = n/(p - 1); For[h = 0, q >= p^h , h++]; h]; %t A212429 a /@ Range[1, 30] (* _Jean-François Alcover_, Oct 14 2019, after _Alois P. Heinz_ *) %Y A212429 Cf. A053657. %K A212429 nonn %O A212429 1,3 %A A212429 _Jean-Luc Chabert_, Jun 21 2012