This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212442 #17 Dec 26 2017 03:16:15 %S A212442 1,8,140,1864,26602,373080,5253564,73911192,1040045475,14634444720, %T A212442 205922568360,2897549559600,40771618763540,573700205699920, %U A212442 8072574516567400,113589743388536528,1598328982089075749,22490195492277648120,316461065874934143252 %N A212442 G.f.: exp( Sum_{n>=1} A002203(n)^3 * x^n/n ), where A002203 is the companion Pell numbers. %C A212442 More generally, exp(Sum_{k>=1} A002203(k)^(2*n+1) * x^k/k) = Product_{k=0..n} 1/(1 - (-1)^(n-k)*A002203(2*k+1)*x - x^2)^binomial(2*n+1,n-k). %C A212442 Compare to g.f. exp(Sum_{k>=1} A002203(k) * x^k/k) = 1/(1-2*x-x^2). %H A212442 G. C. Greubel, <a href="/A212442/b212442.txt">Table of n, a(n) for n = 0..865</a> %H A212442 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,76,136,-38,-136,76,-8,-1). %F A212442 G.f.: 1 / ( (1+2*x-x^2)^3 * (1-14*x-x^2) ). %F A212442 G.f.: 1 / Product_{n>=1} (1 - A002203(n)*x^n + (-1)^n*x^(2*n))^A212443(n) where A212443(n) = (1/n)*Sum_{d|n} moebius(n/d)*A002203(d)^2. %F A212442 a(0)=1, a(1)=8, a(2)=140, a(3)=1864, a(4)=26602, a(5)=373080, a(6)=5253564, a(7)=73911192, a(n) = 8*a(n-1) + 76*a(n-2) + 136*a(n-3) - 38*a(n-4) - 136*a(n-5) + 76*a(n-6) - 8*a(n-7) - a(n-8). - _Harvey P. Dale_, Feb 15 2015 %e A212442 G.f.: A(x) = 1 + 8*x + 140*x^2 + 1864*x^3 + 26602*x^4 + 373080*x^5 + ... %e A212442 where %e A212442 log(A(x)) = 2^3*x + 6^3*x^2/2 + 14^3*x^3/3 + 34^3*x^4/4 + 82^3*x^5/5 + 198^3*x^6/6 + 478^3*x^7/7 + 1154^3*x^8/8 + ... + A002203(n)^3*x^n/n + ... %e A212442 Also, the g.f. equals the infinite product: %e A212442 A(x) = 1/( (1-2*x-x^2)^4 * (1-6*x^2+x^4)^16 * (1-14*x^3-x^6)^64 * (1-34*x^4+x^8)^280 * (1-82*x^5-x^10)^1344 * (1-198*x^6+x^12)^6496 * ... * (1 - A002203(n)*x^n + (-1)^n*x^(2*n))^A212443(n) * ...). %e A212442 The exponents in these products begin: %e A212442 A212443 = [4, 16, 64, 280, 1344, 6496, 32640, 166320, 862400, ...]. %e A212442 The companion Pell numbers begin (at offset 1): %e A212442 A002203 = [2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, ...]. %t A212442 CoefficientList[Series[1/((1+2x-x^2)^3(1-14x-x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{8,76,136,-38,-136,76,-8,-1},{1,8,140,1864,26602,373080,5253564,73911192},30] (* _Harvey P. Dale_, Feb 15 2015 *) %o A212442 (PARI) /* Subroutine for the PARI programs that follow: */ %o A212442 {A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)),n)} %o A212442 (PARI) /* G.F. by Definition: */ %o A212442 {a(n)=polcoeff(exp(sum(k=1, n, A002203(k)^3*x^k/k)+x*O(x^n)), n)} %o A212442 (PARI) /* G.F. as a Finite Product: */ %o A212442 {a(n, m=1)=polcoeff(prod(k=0, m, 1/(1 - (-1)^(m-k)*A002203(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1, m-k)), n)} %o A212442 (PARI) /* G.F. as an Infinite Product: */ %o A212442 {A212443(n)=(1/n)*sumdiv(n,d, moebius(n/d)*A002203(d)^2)} %o A212442 {a(n)=polcoeff(1/prod(m=1,n, (1 - A002203(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))^A212443(m)),n)} %o A212442 for(n=0,30,print1(a(n),", ")) %Y A212442 Cf. A212443, A203803, A002203, A204062. %K A212442 nonn %O A212442 0,2 %A A212442 _Paul D. Hanna_, May 17 2012