This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212485 #38 Oct 24 2022 11:09:48 %S A212485 1,2,4,3,6,8,12,24,31,62,124,13,16,26,39,48,52,78,104,156,208,312,624, %T A212485 11,22,44,71,142,284,781,1562,3124,7,9,14,18,21,28,36,42,56,63,72,84, %U A212485 93,126,168,186,217,248,252,279,372,434,504,558,651,744,868,1116 %N A212485 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(5) listed in ascending order. %C A212485 The elements m of row n, are also solutions to the equation: multiplicative order of 5 mod m = n, with gcd(m,5) = 1, cf. A050977. %D A212485 R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 557-560. %H A212485 Alois P. Heinz, <a href="/A212485/b212485.txt">Rows n = 1..32, flattened</a> %H A212485 V. I. Arnol'd, <a href="https://doi.org/10.1070/RM2003v058n04ABEH000641">Topology and statistics of formulas of arithmetics</a>, Uspekhi Mat. Nauk, 58:4(352) (2003), 3-28 %F A212485 T(n,k) = k-th smallest element of M(n) with M(n) = {d : d | (5^n-1)} \ (M(1) U M(2) U ... U M(i-1)) for n>1, M(1) = {1,2,4}. %F A212485 |M(n)| = Sum_{d|n} mu(n/d)*tau(5^d-1) = A059887. %e A212485 Triangle T(n,k) begins: %e A212485 1, 2, 4; %e A212485 3, 6, 8, 12, 24; %e A212485 31, 62, 124; %e A212485 13, 16, 26, 39, 48, 52, 78, 104, 156, 208, 312, 624; %e A212485 11, 22, 44, 71, 142, 284, 781, 1562, 3124; %e A212485 ... %p A212485 with(numtheory): %p A212485 M:= proc(n) option remember; %p A212485 `if`(n=1, {1, 2, 4}, divisors(5^n-1) minus U(n-1)) %p A212485 end: %p A212485 U:= proc(n) option remember; %p A212485 `if`(n=0, {}, M(n) union U(n-1)) %p A212485 end: %p A212485 T:= n-> sort([M(n)[]])[]: %p A212485 seq(T(n), n=1..8); %t A212485 M[n_] := M[n] = If[n == 1, {1, 2, 4}, Divisors[5^n-1] ~Complement~ U[n-1]]; %t A212485 U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]]; %t A212485 T[n_] := Sort[M[n]]; Array[T, 8] // Flatten (* _Jean-François Alcover_, Jun 10 2018, from Maple *) %Y A212485 Cf. A212906, A059912, A058944, A059499, A059886-A059892. %Y A212485 Column k=3 of A212737. %Y A212485 Column k=1 gives: A218357. %K A212485 easy,nonn,look,tabf %O A212485 1,2 %A A212485 _Boris Putievskiy_, Jun 02 2012