This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212526 #26 Apr 10 2016 02:31:14 %S A212526 13,12,11,10,23,22,21,20,33,32,31,30,1303,1302,1301,1300,1313,1312, %T A212526 1311,1310,1323,1322,1321,1320,1333,1332,1331,1330,1203,1202,1201, %U A212526 1200,1213,1212,1211,1210,1223,1222,1221,1220 %N A212526 Negative integers in base -4. %C A212526 Interleaving with zeros gives A212542 (base 2i representation of negative integers). %C A212526 More precisely, a(n) is the representation of -n in base -4. - _M. F. Hasler_, May 21 2012 %H A212526 Joerg Arndt, <a href="/A212526/b212526.txt">Table of n, a(n) for n = 1..1000</a> %e A212526 a(13)=1303: 1*(-4)^3 + 3*(-4)^2 + 0*(-4)^1 + 3*(-4)^0 = -64 + 48 +3 = -13. %p A212526 a:= proc(n) local d, i, l, m; %p A212526 m:= n; %p A212526 l:= NULL; %p A212526 for i from 0 while m>0 do %p A212526 d:= irem(m, 4, 'm'); %p A212526 if irem (i, 2)=0 and d>0 then d:= 4-d; m:= m+1 fi; %p A212526 l:= d, l %p A212526 od; parse(cat(l)) %p A212526 end: %p A212526 seq(a(n), n=1..60); # _Alois P. Heinz_, May 20 2012 %o A212526 (PARI) A212526(n,s="")={n=-n;until(!n\=-4,s=Str(n%-4,s));eval(s)} \\ _M. F. Hasler_, May 21 2012 %o A212526 (Python) %o A212526 def A212526(n): %o A212526 s, q = '', -n %o A212526 while q >= 4 or q < 0: %o A212526 q, r = divmod(q, -4) %o A212526 if r < 0: %o A212526 q += 1 %o A212526 r += 4 %o A212526 s += str(r) %o A212526 return int(str(q)+s[::-1]) # _Chai Wah Wu_, Apr 10 2016 %Y A212526 Cf. A007608 (Nonnegative integers in base -4). %K A212526 nonn,base %O A212526 1,1 %A A212526 _Joerg Arndt_, May 20 2012