cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212532 Number of nondecreasing sequences of n 1..4 integers with every element dividing the sequence sum.

Original entry on oeis.org

4, 4, 7, 10, 15, 15, 24, 29, 39, 45, 57, 65, 83, 92, 111, 127, 149, 163, 193, 213, 245, 270, 305, 333, 378, 408, 455, 496, 547, 587, 650, 697, 763, 819, 889, 949, 1033, 1096, 1183, 1261, 1353, 1431, 1539, 1625, 1737, 1836, 1953, 2057, 2192, 2300, 2439, 2566, 2711
Offset: 1

Views

Author

R. H. Hardin, May 20 2012

Keywords

Comments

Column 4 of A212536.

Examples

			Some solutions for n=8:
..1....4....2....2....1....1....1....2....1....1....1....2....3....1....1....1
..1....4....2....3....1....1....1....2....1....2....1....2....3....1....1....3
..2....4....2....3....1....2....1....4....1....2....3....2....3....1....2....3
..4....4....2....3....3....2....1....4....1....2....3....2....3....1....2....3
..4....4....4....3....3....2....1....4....1....2....4....2....3....1....2....3
..4....4....4....3....3....2....1....4....1....3....4....2....3....1....4....3
..4....4....4....3....3....2....2....4....2....3....4....4....3....3....4....4
..4....4....4....4....3....4....2....4....4....3....4....4....3....3....4....4
		

Crossrefs

Cf. A212536.

Formula

Empirical: a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) + a(n-12) - a(n-13) - a(n-14) + a(n-16) + a(n-17) - a(n-18).
Empirical g.f.: x*(4 - x^2 - x^3 + 2*x^4 - 2*x^5 + x^6 + 3*x^7 + 4*x^8 - 3*x^9 - 3*x^10 + x^11 + x^12 - x^13 + 2*x^15 - x^17) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)^2*(1 - x^2 + x^4)). - Colin Barker, Jul 20 2018