A212533 Number of nondecreasing sequences of n 1..5 integers with every element dividing the sequence sum.
5, 5, 8, 12, 21, 21, 33, 40, 57, 70, 90, 101, 132, 153, 208, 262, 343, 401, 491, 546, 625, 667, 737, 770, 851, 889, 989, 1070, 1226, 1361, 1592, 1787, 2070, 2305, 2616, 2864, 3198, 3444, 3781, 4045, 4399, 4670, 5070, 5391, 5860, 6254, 6786, 7235, 7843, 8336
Offset: 1
Keywords
Examples
Some solutions for n=8 ..1....1....5....1....1....1....1....2....1....1....1....1....1....1....2....1 ..1....1....5....2....1....2....2....2....1....1....1....3....1....1....3....1 ..1....2....5....2....2....2....3....3....1....2....1....3....1....3....3....1 ..1....4....5....3....2....5....3....3....3....2....1....3....1....5....3....1 ..4....4....5....4....2....5....3....5....3....2....1....5....2....5....3....2 ..4....4....5....4....2....5....4....5....3....4....1....5....2....5....3....2 ..4....4....5....4....2....5....4....5....3....4....1....5....4....5....3....2 ..4....4....5....4....4....5....4....5....3....4....1....5....4....5....4....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = a(n-1) +a(n-2) -2*a(n-5) +a(n-8) +a(n-9) -a(n-10) +a(n-60) -a(n-61) -a(n-62) +2*a(n-65) -a(n-68) -a(n-69) +a(n-70)
Comments