A212534 Number of nondecreasing sequences of n 1..6 integers with every element dividing the sequence sum.
6, 6, 11, 17, 30, 40, 69, 91, 130, 166, 224, 296, 439, 606, 841, 1080, 1352, 1594, 1877, 2112, 2397, 2672, 3055, 3500, 4159, 4932, 5966, 7144, 8568, 10073, 11781, 13488, 15367, 17256, 19348, 21511, 23999, 26623, 29660, 32913, 36620, 40561, 45024, 49719
Offset: 1
Keywords
Examples
Some solutions for n=8 ..1....2....3....2....1....2....1....2....1....2....1....2....2....1....1....1 ..1....2....3....2....1....2....3....2....1....4....1....2....2....1....1....1 ..1....3....3....2....1....3....3....2....1....4....2....2....2....2....2....2 ..3....3....3....2....1....3....3....2....1....4....3....6....2....2....3....2 ..4....3....3....2....2....3....5....2....1....4....3....6....3....2....5....4 ..4....3....3....2....4....5....5....2....2....6....4....6....3....4....6....4 ..4....4....3....6....5....6....5....3....2....6....4....6....4....4....6....4 ..6....4....3....6....5....6....5....3....3....6....6....6....6....4....6....6
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = a(n-1) +a(n-2) -a(n-5) -a(n-6) -a(n-7) +a(n-8) +a(n-9) +a(n-10) -a(n-13) -a(n-14) +a(n-15) +a(n-60) -a(n-61) -a(n-62) +a(n-65) +a(n-66) +a(n-67) -a(n-68) -a(n-69) -a(n-70) +a(n-73) +a(n-74) -a(n-75)
Comments