cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A212532 Number of nondecreasing sequences of n 1..4 integers with every element dividing the sequence sum.

Original entry on oeis.org

4, 4, 7, 10, 15, 15, 24, 29, 39, 45, 57, 65, 83, 92, 111, 127, 149, 163, 193, 213, 245, 270, 305, 333, 378, 408, 455, 496, 547, 587, 650, 697, 763, 819, 889, 949, 1033, 1096, 1183, 1261, 1353, 1431, 1539, 1625, 1737, 1836, 1953, 2057, 2192, 2300, 2439, 2566, 2711
Offset: 1

Views

Author

R. H. Hardin, May 20 2012

Keywords

Comments

Column 4 of A212536.

Examples

			Some solutions for n=8:
..1....4....2....2....1....1....1....2....1....1....1....2....3....1....1....1
..1....4....2....3....1....1....1....2....1....2....1....2....3....1....1....3
..2....4....2....3....1....2....1....4....1....2....3....2....3....1....2....3
..4....4....2....3....3....2....1....4....1....2....3....2....3....1....2....3
..4....4....4....3....3....2....1....4....1....2....4....2....3....1....2....3
..4....4....4....3....3....2....1....4....1....3....4....2....3....1....4....3
..4....4....4....3....3....2....2....4....2....3....4....4....3....3....4....4
..4....4....4....4....3....4....2....4....4....3....4....4....3....3....4....4
		

Crossrefs

Cf. A212536.

Formula

Empirical: a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) + a(n-12) - a(n-13) - a(n-14) + a(n-16) + a(n-17) - a(n-18).
Empirical g.f.: x*(4 - x^2 - x^3 + 2*x^4 - 2*x^5 + x^6 + 3*x^7 + 4*x^8 - 3*x^9 - 3*x^10 + x^11 + x^12 - x^13 + 2*x^15 - x^17) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)^2*(1 - x^2 + x^4)). - Colin Barker, Jul 20 2018

A212533 Number of nondecreasing sequences of n 1..5 integers with every element dividing the sequence sum.

Original entry on oeis.org

5, 5, 8, 12, 21, 21, 33, 40, 57, 70, 90, 101, 132, 153, 208, 262, 343, 401, 491, 546, 625, 667, 737, 770, 851, 889, 989, 1070, 1226, 1361, 1592, 1787, 2070, 2305, 2616, 2864, 3198, 3444, 3781, 4045, 4399, 4670, 5070, 5391, 5860, 6254, 6786, 7235, 7843, 8336
Offset: 1

Views

Author

R. H. Hardin May 20 2012

Keywords

Comments

Column 5 of A212536

Examples

			Some solutions for n=8
..1....1....5....1....1....1....1....2....1....1....1....1....1....1....2....1
..1....1....5....2....1....2....2....2....1....1....1....3....1....1....3....1
..1....2....5....2....2....2....3....3....1....2....1....3....1....3....3....1
..1....4....5....3....2....5....3....3....3....2....1....3....1....5....3....1
..4....4....5....4....2....5....3....5....3....2....1....5....2....5....3....2
..4....4....5....4....2....5....4....5....3....4....1....5....2....5....3....2
..4....4....5....4....2....5....4....5....3....4....1....5....4....5....3....2
..4....4....5....4....4....5....4....5....3....4....1....5....4....5....4....2
		

Formula

Empirical: a(n) = a(n-1) +a(n-2) -2*a(n-5) +a(n-8) +a(n-9) -a(n-10) +a(n-60) -a(n-61) -a(n-62) +2*a(n-65) -a(n-68) -a(n-69) +a(n-70)

A212534 Number of nondecreasing sequences of n 1..6 integers with every element dividing the sequence sum.

Original entry on oeis.org

6, 6, 11, 17, 30, 40, 69, 91, 130, 166, 224, 296, 439, 606, 841, 1080, 1352, 1594, 1877, 2112, 2397, 2672, 3055, 3500, 4159, 4932, 5966, 7144, 8568, 10073, 11781, 13488, 15367, 17256, 19348, 21511, 23999, 26623, 29660, 32913, 36620, 40561, 45024, 49719
Offset: 1

Views

Author

R. H. Hardin May 20 2012

Keywords

Comments

Column 6 of A212536

Examples

			Some solutions for n=8
..1....2....3....2....1....2....1....2....1....2....1....2....2....1....1....1
..1....2....3....2....1....2....3....2....1....4....1....2....2....1....1....1
..1....3....3....2....1....3....3....2....1....4....2....2....2....2....2....2
..3....3....3....2....1....3....3....2....1....4....3....6....2....2....3....2
..4....3....3....2....2....3....5....2....1....4....3....6....3....2....5....4
..4....3....3....2....4....5....5....2....2....6....4....6....3....4....6....4
..4....4....3....6....5....6....5....3....2....6....4....6....4....4....6....4
..6....4....3....6....5....6....5....3....3....6....6....6....6....4....6....6
		

Formula

Empirical: a(n) = a(n-1) +a(n-2) -a(n-5) -a(n-6) -a(n-7) +a(n-8) +a(n-9) +a(n-10) -a(n-13) -a(n-14) +a(n-15) +a(n-60) -a(n-61) -a(n-62) +a(n-65) +a(n-66) +a(n-67) -a(n-68) -a(n-69) -a(n-70) +a(n-73) +a(n-74) -a(n-75)

A212535 Number of nondecreasing sequences of n 1..7 integers with every element dividing the sequence sum.

Original entry on oeis.org

7, 7, 12, 18, 33, 44, 83, 106, 157, 200, 272, 351, 518, 715, 1010, 1343, 1756, 2152, 2670, 3101, 3685, 4168, 4866, 5474, 6452, 7345, 8718, 10082, 11964, 13801, 16207, 18489, 21386, 24289, 27876, 31630, 36294, 41204, 47131, 53471, 60792, 68552, 77355, 86516
Offset: 1

Views

Author

R. H. Hardin May 20 2012

Keywords

Comments

Column 7 of A212536

Examples

			Some solutions for n=8
..3....1....1....1....1....1....1....1....1....1....1....1....2....6....2....2
..3....1....1....1....1....1....1....1....2....3....1....1....2....6....2....2
..3....3....1....1....2....1....1....1....2....3....2....3....4....6....2....2
..3....3....1....5....2....1....3....1....2....3....2....3....4....6....2....3
..3....4....1....5....2....1....3....1....2....3....3....3....4....6....2....3
..5....4....5....5....2....1....3....1....2....3....3....3....4....6....4....4
..5....4....5....6....5....3....6....2....4....4....6....4....4....6....4....4
..5....4....5....6....5....3....6....4....5....4....6....6....4....6....6....4
		

A212537 Number of nondecreasing sequences of 4 1..n integers with every element dividing the sequence sum.

Original entry on oeis.org

1, 3, 5, 10, 12, 17, 18, 23, 26, 30, 31, 40, 41, 43, 47, 52, 53, 59, 60, 67, 70, 72, 73, 82, 84, 86, 89, 94, 95, 103, 104, 109, 111, 113, 115, 125, 126, 128, 130, 137, 138, 144, 145, 150, 155, 157, 158, 167, 168, 172, 174, 179, 180, 186, 188, 193, 195, 197, 198, 210, 211, 213
Offset: 1

Views

Author

R. H. Hardin, May 20 2012

Keywords

Comments

Row 4 of A212536.

Examples

			Some solutions for n=8
..4....2....6....7....5....2....1....3....2....1....3....2....4....1....1....1
..4....6....6....7....5....2....2....3....2....2....3....3....6....1....1....1
..8....8....6....7....5....4....3....6....4....2....3....3....6....1....2....4
..8....8....6....7....5....8....6....6....4....5....3....4....8....3....4....6
		

Crossrefs

Cf. A212536.

Formula

Empirical: a(n) = 2*a(n-1) -2*a(n-2) -a(n-3) +4*a(n-4) -5*a(n-5) +6*a(n-7) -9*a(n-8) +3*a(n-9) +6*a(n-10) -12*a(n-11) +7*a(n-12) +4*a(n-13) -13*a(n-14) +11*a(n-15) -11*a(n-17) +13*a(n-18) -4*a(n-19) -7*a(n-20) +13*a(n-21) -8*a(n-22) -a(n-23) +10*a(n-24) -10*a(n-25) +5*a(n-26) +5*a(n-27) -10*a(n-28) +10*a(n-29) -a(n-30) -8*a(n-31) +13*a(n-32) -7*a(n-33) -4*a(n-34) +13*a(n-35) -11*a(n-36) +11*a(n-38) -13*a(n-39) +4*a(n-40) +7*a(n-41) -12*a(n-42) +6*a(n-43) +3*a(n-44) -9*a(n-45) +6*a(n-46) -5*a(n-48) +4*a(n-49) -a(n-50) -2*a(n-51) +2*a(n-52) -a(n-53).

A212538 Number of nondecreasing sequences of 5 1..n integers with every element dividing the sequence sum.

Original entry on oeis.org

1, 4, 8, 15, 21, 30, 33, 46, 53, 66, 67, 87, 88, 95, 111, 125, 126, 143, 144, 170, 180, 183, 184, 214, 220, 223, 231, 245, 246, 282, 283, 297, 302, 305, 315, 346, 347, 350, 355, 388, 389, 412, 413, 420, 442, 445, 446, 478, 481, 495, 499, 507, 508, 526, 533, 553, 557, 560
Offset: 1

Views

Author

R. H. Hardin May 20 2012

Keywords

Comments

Row 5 of A212536

Examples

			Some solutions for n=8
..1....1....1....2....8....1....2....2....1....1....5....1....1....2....3....1
..2....1....1....2....8....3....4....4....4....3....5....1....1....2....3....3
..2....3....2....6....8....3....4....6....5....4....5....1....1....2....6....6
..2....3....4....6....8....3....6....6....5....8....5....3....3....6....6....6
..7....4....8....8....8....5....8....6....5....8....5....3....6....6....6....8
		

A212539 Number of nondecreasing sequences of 6 1..n integers with every element dividing the sequence sum.

Original entry on oeis.org

1, 4, 8, 15, 21, 40, 44, 64, 76, 103, 104, 148, 149, 165, 197, 229, 230, 271, 272, 343, 362, 367, 368, 449, 457, 462, 478, 521, 522, 639, 640, 677, 685, 688, 707, 800, 801, 804, 812, 937, 938, 1011, 1012, 1026, 1094, 1097, 1098, 1204, 1208, 1241, 1246, 1262, 1263
Offset: 1

Views

Author

R. H. Hardin May 20 2012

Keywords

Comments

Row 6 of A212536

Examples

			Some solutions for n=8
..1....2....1....1....2....1....1....5....1....2....1....1....1....6....2....2
..1....2....1....1....2....1....1....5....2....4....1....1....1....6....3....2
..2....2....1....2....4....1....2....5....4....4....1....4....1....6....3....3
..2....6....1....2....4....1....2....5....4....4....2....6....1....6....4....3
..3....6....4....2....4....1....2....5....4....4....2....6....2....6....6....6
..3....6....8....4....8....5....8....5....5....6....7....6....2....6....6....8
		

A212540 Number of nondecreasing sequences of 7 1..n integers with every element dividing the sequence sum.

Original entry on oeis.org

1, 5, 12, 24, 33, 69, 83, 116, 145, 188, 193, 290, 293, 332, 428, 496, 497, 606, 607, 772, 840, 857, 858, 1079, 1098, 1109, 1153, 1277, 1278, 1626, 1627, 1723, 1750, 1757, 1832, 2100, 2101, 2106, 2130, 2541, 2542, 2784, 2785, 2843, 3111, 3115, 3116, 3462, 3477
Offset: 1

Views

Author

R. H. Hardin May 20 2012

Keywords

Comments

Row 7 of A212536

Examples

			Some solutions for n=8
..2....2....1....1....1....2....1....1....2....1....1....1....2....1....3....1
..2....2....2....1....1....2....1....6....2....2....1....2....3....3....3....2
..4....2....2....5....2....2....1....7....5....5....3....3....3....4....3....2
..4....2....2....5....2....3....1....7....5....8....3....4....3....4....5....3
..4....4....7....6....4....3....2....7....5....8....4....4....3....4....5....4
..8....6....7....6....5....4....2....7....5....8....4....4....4....4....5....6
..8....6....7....6....5....8....4....7....6....8....8....6....6....4....6....6
		

A212531 Number of nondecreasing sequences of n 1..n integers with every element dividing the sequence sum.

Original entry on oeis.org

1, 2, 5, 10, 21, 40, 83, 161, 331, 644, 1102, 3627, 5646, 10083, 29188, 53681, 84121, 237453, 373114, 1400757, 2443494
Offset: 1

Views

Author

R. H. Hardin May 20 2012

Keywords

Comments

Diagonal of A212536

Examples

			Some solutions for n=8
..1....2....2....2....1....1....1....1....2....1....1....1....4....6....1....2
..1....2....2....2....1....1....4....1....2....1....1....2....7....6....2....2
..2....2....2....2....4....2....4....1....4....1....1....2....7....6....3....2
..2....2....3....2....5....4....5....3....4....2....1....2....7....6....3....3
..4....2....5....2....5....4....5....3....4....3....2....3....7....6....3....3
..4....2....5....4....8....4....5....3....8....4....2....4....8....6....3....4
..7....4....5....7....8....4....8....6....8....4....2....4....8....6....3....4
..7....4....6....7....8....4....8....6....8....8....2....6....8....6....6....4
		
Showing 1-9 of 9 results.