A212537 Number of nondecreasing sequences of 4 1..n integers with every element dividing the sequence sum.
1, 3, 5, 10, 12, 17, 18, 23, 26, 30, 31, 40, 41, 43, 47, 52, 53, 59, 60, 67, 70, 72, 73, 82, 84, 86, 89, 94, 95, 103, 104, 109, 111, 113, 115, 125, 126, 128, 130, 137, 138, 144, 145, 150, 155, 157, 158, 167, 168, 172, 174, 179, 180, 186, 188, 193, 195, 197, 198, 210, 211, 213
Offset: 1
Keywords
Examples
Some solutions for n=8 ..4....2....6....7....5....2....1....3....2....1....3....2....4....1....1....1 ..4....6....6....7....5....2....2....3....2....2....3....3....6....1....1....1 ..8....8....6....7....5....4....3....6....4....2....3....3....6....1....2....4 ..8....8....6....7....5....8....6....6....4....5....3....4....8....3....4....6
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A212536.
Formula
Empirical: a(n) = 2*a(n-1) -2*a(n-2) -a(n-3) +4*a(n-4) -5*a(n-5) +6*a(n-7) -9*a(n-8) +3*a(n-9) +6*a(n-10) -12*a(n-11) +7*a(n-12) +4*a(n-13) -13*a(n-14) +11*a(n-15) -11*a(n-17) +13*a(n-18) -4*a(n-19) -7*a(n-20) +13*a(n-21) -8*a(n-22) -a(n-23) +10*a(n-24) -10*a(n-25) +5*a(n-26) +5*a(n-27) -10*a(n-28) +10*a(n-29) -a(n-30) -8*a(n-31) +13*a(n-32) -7*a(n-33) -4*a(n-34) +13*a(n-35) -11*a(n-36) +11*a(n-38) -13*a(n-39) +4*a(n-40) +7*a(n-41) -12*a(n-42) +6*a(n-43) +3*a(n-44) -9*a(n-45) +6*a(n-46) -5*a(n-48) +4*a(n-49) -a(n-50) -2*a(n-51) +2*a(n-52) -a(n-53).
Comments