This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212552 #9 Nov 03 2019 04:44:45 %S A212552 3,13,11,29,15797,53,10949,109912203092239643840221,461,59, %T A212552 568972471024107865287021434301977158534824481,149,83,173,1693,107, %U A212552 709,977,269,105649,293,317,2657,179,389,607,1237,137122213,2617,227,509,1049,1097,557,1193,2417,86351 %N A212552 Smallest prime factor of p^p - 1 that is congruent to 1 modulo p where p = prime(n). %C A212552 Subset of A187023. %C A212552 If p is a prime, then p^p-1 has at least a prime factor that is congruent to 1 modulo p. %C A212552 Also smallest prime factor of (p^p - 1)/(p - 1). - _Jianing Song_, Nov 03 2019 %e A212552 a(4) = 29 because prime(4) = 7 and 7^7 -1 = 823542 = 2 * 3 * 29 * 4733 => 29 == 1 (mod 7). %p A212552 with(numtheory): for n from 1 to 34 do:i:=0:p:=ithprime(n):x:=p^p -1:y:=factorset(x):n1:=nops(y):for k from 1 to n1 while(i=0) do:z:=y[k]:if irem(z,p)=1 then i:=1: printf ( "%d %d \n",n,z):else fi:od:od: %t A212552 Table[p=First/@FactorInteger[Prime[n]^Prime[n]-1]; Select[p, Mod[#1, Prime[n]] == 1 &, 1][[1]], {n, 1, 10}] %Y A212552 Cf. A187023. %K A212552 nonn %O A212552 1,1 %A A212552 _Michel Lagneau_, May 20 2012