cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212572 Number of (w,x,y,z) with all terms in {1,...,n} and |w-x| <= |x-y| + |y-z|.

Original entry on oeis.org

0, 1, 14, 71, 220, 533, 1094, 2015, 3416, 5449, 8270, 12071, 17044, 23421, 31430, 41343, 53424, 67985, 85326, 105799, 129740, 157541, 189574, 226271, 268040, 315353, 368654, 428455, 495236, 569549, 651910, 742911, 843104, 953121, 1073550, 1205063, 1348284
Offset: 0

Views

Author

Clark Kimberling, May 22 2012

Keywords

Comments

For a guide to related sequences, see A211795.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Abs[w - x] <= Abs[x - y] + Abs[y - z], s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]]   (* A212572 *)
  • PARI
    concat(0, Vec(x*(1+11*x+30*x^2+26*x^3+9*x^4-x^5)/((1-x)^5*(1+x)^2) + O(x^100))) \\ Colin Barker, Dec 06 2015

Formula

a(n) = 3*a(n-1)-a(n-2)-5*a(n-3)+5*a(n-4)+a(n-5)-3*a(n-6)+a(n-7).
From Colin Barker, Dec 06 2015: (Start)
a(n) = 1/48*(38*n^4+20*n^3-32*n^2-2*(3*(-1)^n-11)*n+3*((-1)^n-1)).
G.f.: x*(1+11*x+30*x^2+26*x^3+9*x^4-x^5) / ((1-x)^5*(1+x)^2).
(End)