This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212580 #51 Feb 21 2024 06:16:51 %S A212580 1,1,2,5,20,102,626,4458,36144,328794,3316944,36755520,443828184, %T A212580 5800823880,81591320880,1228888215960,19733475278880,336551479543440, %U A212580 6075437671458000,115733952138747600,2320138519554562560,48827468196234035280,1076310620915575933440 %N A212580 Number of equivalence classes of S_n under transformations of positionally and numerically adjacent elements of the form abc <--> acb where a<b<c. %C A212580 Also the number of equivalence classes of S_n under transformations of positionally and numerically adjacent elements of the form abc <--> bac where a<b<c. %C A212580 Also the number of equivalence classes of S_n under transformations of positionally and numerically adjacent elements of the form abc <--> cba where a<b<c. %C A212580 Also the number of permutations of [n] avoiding consecutive triples j, j+1, j-1. a(4) = 20 = 4! - 4 counts all permutations of [4] except 1342, 2314, 3421, 4231. - _Alois P. Heinz_, Apr 14 2021 %H A212580 Alois P. Heinz, <a href="/A212580/b212580.txt">Table of n, a(n) for n = 0..450</a> %H A212580 Anders Claesson, <a href="https://akc.is/papers/036-From-Hertzsprungs-problem-to-pattern-rewriting-systems.pdf">From Hertzsprung's problem to pattern-rewriting systems</a>, University of Iceland (2020). %H A212580 S. Linton, J. Propp, T. Roby, and J. West, <a href="http://arxiv.org/abs/1111.3920">Equivalence classes of permutations under various relations generated by constrained transpositions, 2011</a> arXiv:1111.3920 [math.CO], <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Roby/roby4.html">J. Int. Seq. 15 (2012) #12.9.1</a> %F A212580 From _Seiichi Manyama_, Feb 20 2024: (Start) %F A212580 G.f.: Sum_{k>=0} k! * ( x * (1-x^2) )^k. %F A212580 a(n) = Sum_{k=0..floor(n/3)} (-1)^k * (n-2*k)! * binomial(n-2*k,k). (End) %e A212580 From _Alois P. Heinz_, May 22 2012: (Start) %e A212580 a(3) = 5: {123, 132}, {213}, {231}, {312}, {321}. %e A212580 a(4) = 20: {1234, 1243, 1324}, {1342}, {1423}, {1432}, {2134}, {2143}, {2314}, {2341, 2431}, {2413}, {3124}, {3142}, {3214}, {3241}, {3412}, {3421}, {4123, 4132}, {4213}, {4231}, {4312}, {4321}. (End) %p A212580 b:= proc(s, x, y) option remember; `if`(s={}, 1, add( %p A212580 `if`(x=0 or x-y<>1 or j-x<>1, b(s minus {j}, y, j), 0), j=s)) %p A212580 end: %p A212580 a:= n-> b({$1..n}, 0$2): %p A212580 seq(a(n), n=0..14); # _Alois P. Heinz_, Apr 14 2021 %p A212580 # second Maple program: %p A212580 a:= proc(n) option remember; `if`(n<5, [1$2, 2, 5, 20][n+1], %p A212580 n*a(n-1)+3*a(n-2)-(2*n-2)*a(n-3)+(n-2)*a(n-5)) %p A212580 end: %p A212580 seq(a(n), n=0..22); # _Alois P. Heinz_, Apr 14 2021 %t A212580 a[n_] := a[n] = If[n < 5, {1, 1, 2, 5, 20}[[n+1]], %t A212580 n*a[n-1] + 3*a[n-2] - (2n - 2)*a[n-3] + (n-2)*a[n-5]]; %t A212580 Table[a[n], {n, 0, 22}] (* _Jean-François Alcover_, Apr 20 2022, after _Alois P. Heinz_ *) %o A212580 (PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*(x*(1-x^2))^k)) \\ _Seiichi Manyama_, Feb 20 2024 %Y A212580 Cf. A174072, A210667, A210668, A210669, A210671, A212417, A212581. %Y A212580 Column k=0 of A343535. %K A212580 nonn %O A212580 0,3 %A A212580 _Tom Roby_, May 21 2012 %E A212580 a(9)-a(22) from _Alois P. Heinz_, Apr 14 2021