A212591 a(n) is the smallest value of k for which A020986(k) = n.
0, 1, 2, 5, 8, 9, 10, 21, 32, 33, 34, 37, 40, 41, 42, 85, 128, 129, 130, 133, 136, 137, 138, 149, 160, 161, 162, 165, 168, 169, 170, 341, 512, 513, 514, 517, 520, 521, 522, 533, 544, 545, 546, 549, 552, 553, 554, 597, 640, 641, 642, 645, 648, 649, 650, 661
Offset: 1
Keywords
Links
- Michael Day, Table of n, a(n) for n = 1..10000
- J. Brillhart and P. Morton, A case study in mathematical research: the Golay-Rudin-Shapiro sequence, Amer. Math. Monthly, 103 (1996) 854-869.
- Kevin Ryde, Iterations of the Alternate Paperfolding Curve, see index GRScumulFirstN.
Programs
-
J
NB. J function on a vector NB. Beware round-off errors on large arguments NB. ok up to ~ 1e8 alphav =: 3 : 0 n =. <: y if.+/ ntlo=. n > 0 do. n =. ntlo#n m =. >.-: n r =. <.2^.m f =. <.3%~2+2^2*>:i.>./>:r z =. 0 mi =. m for_i. i.#f do. z =. z + (i{f) * <.0.5 + mi =. mi%2 end. nzer=. (+/ @: (0=>./\)@:|.)"1 @: #: m ntlo #^:_1 z - (2|n) * <.-:nzer{f else. ntlo end. ) NB. eg alphav 1 3 5 100 2 8 33
-
PARI
alpha(n)={ if(n<2, return(max(0,n-1))); local(nm1=n-1, mi=m=ceil(nm1/2), r=floor(log(m)/log(2)), i,fi,alpha=0,a); forstep(i=1, 2*r+1, 2, mi/=2; fi=(1+2^i)\3; alpha+=fi*floor(0.5+mi); ); alpha*=2; if(nm1%2, \\ adjust for even n a=factor(2*m)[1,2]-1; alpha-= (1+2^(1+2*a))\3; ); return(alpha); }
Formula
a(2*n-1) - a(2*n-2) = (2^(2*k+1)+1)/3 and a(2*n) - a(2*n-1) = (2^(2*k+1)+1)/3 with a(0) = a(1) = 0, where n = (2^k)*(2*m-1) for some integers k >= 0 and m > 0.
Restating the formula above, a(n+1) - a(n) = A007583(A050605(n-1)) = A276391 with terms repeated. - John Keith, Mar 04 2021
Extensions
Minor edits by N. J. A. Sloane, Jun 06 2012
Comments