cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212594 a(n) is the difference between multiples of 11 with even and odd decimal digit sum in interval [0,10^n).

This page as a plain text file.
%I A212594 #22 Mar 29 2024 09:44:57
%S A212594 1,10,19,430,841,20602,40363,995710,1951057,48162410,94373763,
%T A212594 2329795534,4565217305,112701782490,220838347675,5451852478622,
%U A212594 10682866609569,263728727794378,516774588979187,12757653047779310,24998531506579433,617140623134480698
%N A212594 a(n) is the difference between multiples of 11 with even and odd decimal digit sum in interval [0,10^n).
%H A212594 Vladimir Shevelev, <a href="http://arxiv.org/abs/0710.3177">On monotonic strengthening of Newman-like phenomenon on (2m+1)-multiples in base 2m</a>, arXiv:0710.3177 [math.NT], 2007.
%H A212594 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,55,0,-330,0,462,0,-165,0,11).
%F A212594 For n>=11, a(n) = 55*a(n-2)-330*a(n-4)+462*a(n-6)-165*a(n-8)+11*a(n-10).
%F A212594 G.f.: x*(1+10*x-36*x^2-120*x^3+126*x^4+252*x^5-84*x^6-120*x^7+9*x^8+10*x^9)/(1-55*x^2+330*x^4-462*x^6+165*x^8-11*x^10). [_Bruno Berselli_, May 22 2012]
%t A212594 LinearRecurrence[{0, 55, 0, -330, 0, 462, 0, -165, 0, 11}, {1, 10, 19, 430, 841, 20602, 40363, 995710, 1951057, 48162410}, 22] (* _Bruno Berselli_, May 22 2012 *)
%o A212594 (Magma) m:=23; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1+10*x-36*x^2-120*x^3+126*x^4+252*x^5-84*x^6-120*x^7+9*x^8+10*x^9)/(1-55*x^2+330*x^4-462*x^6+165*x^8-11*x^10))); // _Bruno Berselli_, May 22 2012
%Y A212594 Cf. A038754, A212500, A212592, A212593, A091042.
%K A212594 nonn,base,easy
%O A212594 1,2
%A A212594 _Vladimir Shevelev_ and _Peter J. C. Moses_, May 22 2012