This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212594 #22 Mar 29 2024 09:44:57 %S A212594 1,10,19,430,841,20602,40363,995710,1951057,48162410,94373763, %T A212594 2329795534,4565217305,112701782490,220838347675,5451852478622, %U A212594 10682866609569,263728727794378,516774588979187,12757653047779310,24998531506579433,617140623134480698 %N A212594 a(n) is the difference between multiples of 11 with even and odd decimal digit sum in interval [0,10^n). %H A212594 Vladimir Shevelev, <a href="http://arxiv.org/abs/0710.3177">On monotonic strengthening of Newman-like phenomenon on (2m+1)-multiples in base 2m</a>, arXiv:0710.3177 [math.NT], 2007. %H A212594 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,55,0,-330,0,462,0,-165,0,11). %F A212594 For n>=11, a(n) = 55*a(n-2)-330*a(n-4)+462*a(n-6)-165*a(n-8)+11*a(n-10). %F A212594 G.f.: x*(1+10*x-36*x^2-120*x^3+126*x^4+252*x^5-84*x^6-120*x^7+9*x^8+10*x^9)/(1-55*x^2+330*x^4-462*x^6+165*x^8-11*x^10). [_Bruno Berselli_, May 22 2012] %t A212594 LinearRecurrence[{0, 55, 0, -330, 0, 462, 0, -165, 0, 11}, {1, 10, 19, 430, 841, 20602, 40363, 995710, 1951057, 48162410}, 22] (* _Bruno Berselli_, May 22 2012 *) %o A212594 (Magma) m:=23; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1+10*x-36*x^2-120*x^3+126*x^4+252*x^5-84*x^6-120*x^7+9*x^8+10*x^9)/(1-55*x^2+330*x^4-462*x^6+165*x^8-11*x^10))); // _Bruno Berselli_, May 22 2012 %Y A212594 Cf. A038754, A212500, A212592, A212593, A091042. %K A212594 nonn,base,easy %O A212594 1,2 %A A212594 _Vladimir Shevelev_ and _Peter J. C. Moses_, May 22 2012