This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212597 #19 Aug 25 2017 08:13:07 %S A212597 0,0,1,1,3,3,5,5,7,9,10,11,14,15,16,19,20,23,24,27,28,33,30,37,36,42, %T A212597 40,48,44,53,49,57,55,65,55,72,64,74,70,83,72,90,77,95,87,102,84,112, %U A212597 94,112,104,124,102,133,109,135,123,142,117,160,128,152,138 %N A212597 Number of ways of writing n in the form i*j+k*m with 0<i<=j, 0<k<=m, and (j<m or j=m and i<k). %H A212597 Alois P. Heinz, <a href="/A212597/b212597.txt">Table of n, a(n) for n = 1..10000</a> %e A212597 1*1+1*4 = 1*2+1*3 = 1*1+2*2 = 5, so a(5) = 3. %p A212597 with(numtheory): %p A212597 a:= proc(n) local j, l, m; %p A212597 add(add(add(`if`(j<m or j=m and l*m<(n-l)*j, 1, 0), %p A212597 m=select(h-> is(h>=sqrt(n-l)), divisors(n-l))), %p A212597 j=select(h-> is(h>=sqrt(l)), divisors(l))), l=1..n-1) %p A212597 end: %p A212597 seq(a(n), n=1..100); # _Alois P. Heinz_, May 24 2012 %t A212597 a[n_] := Sum[Sum[Sum[If[j < m || j == m && l*m < (n-l)*j, 1, 0], {m, Select[Divisors[n-l], # >= Sqrt[n-l]&]}], {j, Select[Divisors[l], # >= Sqrt[l]&]}], {l, 1, n-1}]; %t A212597 Array[a, 100] (* _Jean-François Alcover_, Mar 27 2017, after _Alois P. Heinz_ *) %Y A212597 Cf. A007875, A094820. %K A212597 nonn,look %O A212597 1,5 %A A212597 _John W. Layman_, May 22 2012