cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A212502 Composite numbers k that divide the imaginary part of (1+2i)^A201629(k).

Original entry on oeis.org

4, 8, 12, 16, 24, 32, 36, 48, 56, 64, 72, 96, 108, 112, 128, 132, 143, 144, 156, 168, 192, 216, 224, 256, 264, 272, 288, 312, 324, 336, 384, 392, 396, 399, 432, 448, 468, 496, 504, 512, 527, 528, 544, 552, 576, 624, 648, 672, 768, 779, 784, 792, 816, 864
Offset: 1

Views

Author

Keywords

Comments

If p is a prime number then p divides the imaginary part of (1+2i)^A201629(p).
The numbers of this sequence may be called Fermat pseudoprimes to base 1+2i.

Crossrefs

Programs

  • Maple
    A201629:= proc(n) if n::even then n elif n mod 4 = 1 then n-1 else n+1 fi end proc:
    filter:= proc(n) not isprime(n) and type(Powmod(1+2*x, A201629(n), x^2+1, x) mod n, integer) end proc:
    select(filter, [$2..1000]); # Robert Israel, Nov 06 2019
  • Mathematica
    A201629[n_]:=Which[Mod[n,4]==3,n+1,Mod[n,4]==1,n-1,True,n]; Select[1+ Range[1000], ! PrimeQ[#] && Im[PowerMod[1 + 2I, A201629[#], #]] == 0 &]

Extensions

Definition revised by José María Grau Ribas, Oct 12 2013
Showing 1-1 of 1 results.