A212623 Irregular triangle read by rows: T(n,k) is the number of independent vertex subsets with k vertices of the rooted tree with Matula-Goebel number n (n>=1, k>=0).
1, 1, 1, 2, 1, 3, 1, 1, 3, 1, 1, 4, 3, 1, 4, 3, 1, 4, 3, 1, 1, 4, 3, 1, 1, 5, 6, 1, 1, 5, 6, 1, 1, 5, 6, 1, 1, 5, 6, 2, 1, 5, 6, 2, 1, 5, 6, 2, 1, 6, 10, 4, 1, 5, 6, 4, 1, 1, 5, 6, 2, 1, 6, 10, 5, 1, 5, 6, 4, 1, 1, 6, 10, 5, 1, 1, 6, 10, 5, 1, 1, 6, 10, 4, 1, 6, 10, 5, 1, 6, 10, 7, 2, 1, 7, 15
Offset: 1
Examples
Row 5 is [1,4,3] because the rooted tree with Matula-Goebel number 5 is the path tree R - A - B - C with independent vertex subsets: {}, {R}, {A}, {B}, {C}, {R,B}, {R,C}, {A,C}. Triangle starts: 1, 1; 1, 2; 1, 3, 1; 1, 3, 1; 1, 4, 3; ...
Links
- Emeric Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- H. Prodinger and R. F. Tichy, Fibonacci numbers of graphs, Fibonacci Quarterly, 20, 1982, 16-21.
- Index entries for sequences related to Matula-Goebel numbers
Crossrefs
Programs
-
Maple
with(numtheory): A := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [x, 1] elif bigomega(n) = 1 then [expand(x*A(pi(n))[2]), expand(A(pi(n))[1])+A(pi(n))[2]] else [sort(expand(A(r(n))[1]*A(s(n))[1]/x)), sort(expand(A(r(n))[2]*A(s(n))[2]))] end if end proc: P := proc (n) options operator, arrow: sort(A(n)[1]+A(n)[2]) end proc: for n to 35 do seq(coeff(P(n), x, k), k = 0 .. degree(P(n))) end do; % yields sequence in triangular form
-
Mathematica
r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; A [n_] := Which[n == 1, {x, 1}, PrimeOmega[n] == 1, {x*A[PrimePi[n]][[2]], A[PrimePi[n]][[1]] + A[PrimePi[n]][[2]]}, True, {A[r[n]][[1]]*A[s[n]][[1]]/x, A[r[n]][[2]]*A[s[n]][[2]]}]; P[n_] := A[n] // Total; T[n_] := CoefficientList[P[n], x]; Table[T[n], {n, 1, 35}] // Flatten (* Jean-François Alcover, Jun 20 2024, after Maple code *)
Formula
Define R(n) =R(n,x) (S(n)=S(n,x)) the generating polynomial of the independent vertex subsets that contain (do not contain) the root of the rooted tree with Matula-Goebel number n. Then R(1)=x, S(1)=1, R(the t-th prime) = x*S(t), S(the t-th prime) = R(t) + S(t); R(rs) = R(r)R(s)/x, S(rs) = S(r)S(s), (r,s>=2).
Comments