cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212624 Number of vertices in all independent vertex subsets of the rooted tree with Matula-Goebel number n.

This page as a plain text file.
%I A212624 #29 Jun 20 2024 11:12:16
%S A212624 1,2,5,5,10,10,13,13,20,20,20,23,23,23,38,33,23,41,33,45,45,38,41,55,
%T A212624 71,41,74,48,45,78,38,81,71,45,82,92,55,55,78,105,41,85,48,82,137,74,
%U A212624 78,131,98,146,82,85,81,155,130,108,105,78,45,173,92,71,153,193,141,141,55,98,137,157,105,212
%N A212624 Number of vertices in all independent vertex subsets of the rooted tree with Matula-Goebel number n.
%C A212624 A vertex subset in a tree is said to be independent if no pair of vertices is connected by an edge. The empty set is considered to be independent.
%C A212624 The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
%C A212624 a(n) = Sum_{k>=0} k*A212623(n,k).
%H A212624 Emeric Deutsch, <a href="http://arxiv.org/abs/1111.4288">Rooted tree statistics from Matula numbers</a>, arXiv:1111.4288 [math.CO], 2011.
%H A212624 F. Goebel, <a href="http://dx.doi.org/10.1016/0095-8956(80)90049-0">On a 1-1-correspondence between rooted trees and natural numbers</a>, J. Combin. Theory, B 29 (1980), 141-143.
%H A212624 I. Gutman and A. Ivic, <a href="http://dx.doi.org/10.1016/0012-365X(95)00182-V">On Matula numbers</a>, Discrete Math., 150, 1996, 131-142.
%H A212624 I. Gutman and Yeong-Nan Yeh, <a href="http://www.emis.de/journals/PIMB/067/3.html">Deducing properties of trees from their Matula numbers</a>, Publ. Inst. Math., 53 (67), 1993, 17-22.
%H A212624 D. W. Matula, <a href="http://www.jstor.org/stable/2027327">A natural rooted tree enumeration by prime factorization</a>, SIAM Rev. 10 (1968) 273.
%H A212624 <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a>
%F A212624 In A212623 one finds the generating polynomial P(n,x) with respect to the number of vertices of the independent vertex subsets of the rooted tree with Matula-Goebel number n. We have a(n) = subs(x=1, (d/dx)P(n,x)).
%e A212624 a(5)=10 because the rooted tree with Matula-Goebel number 5 is the path tree R - A - B - C with independent vertex subsets: {}, {R}, {A}, {B}, {C}, {R,B}, {R,C}, {A,C}. The total number of vertices is 10.
%p A212624 with(numtheory): A := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [x, 1] elif bigomega(n) = 1 then [expand(x*A(pi(n))[2]), expand(A(pi(n))[1])+A(pi(n))[2]] else [sort(expand(A(r(n))[1]*A(s(n))[1]/x)), sort(expand(A(r(n))[2]*A(s(n))[2]))] end if end proc: P := proc (n) options operator, arrow: sort(A(n)[1]+A(n)[2]) end proc: a := proc (n) options operator, arrow: subs(x = 1, diff(P(n), x)) end proc: seq(a(n), n = 1 .. 100);
%t A212624 r[n_] := FactorInteger[n][[1, 1]];
%t A212624 s[n_] := n/r[n];
%t A212624 A[n_] := Which[n == 1, {x, 1}, PrimeOmega[n] == 1, {x*A[PrimePi[n]][[2]], A[PrimePi[n]][[1]] + A[PrimePi[n]][[2]]}, True, {A[r[n]][[1]]*A[s[n]][[1]]/x, A[r[n]][[2]]*A[s[n]][[2]]}];
%t A212624 P[n_] := A[n] // Total;
%t A212624 a[n_] := D[P[n], x] /. x -> 1;
%t A212624 Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Jun 20 2024, after Maple code *)
%Y A212624 Cf. A212618, A212619, A212620, A212621, A212622, A212623, A212625, A212626, A212627, A212628, A212629, A212630, A212631, A212632.
%K A212624 nonn
%O A212624 1,2
%A A212624 _Emeric Deutsch_, Jun 01 2012