A212627 Irregular triangle read by rows: T(n,k) is the number of maximal independent vertex subsets with k vertices of the rooted tree with Matula-Goebel number n (n>=1, k>=1).
1, 2, 1, 1, 1, 1, 0, 3, 0, 3, 1, 0, 1, 1, 0, 1, 0, 3, 1, 0, 3, 1, 0, 3, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 4, 1, 0, 0, 1, 0, 1, 2, 0, 0, 5, 1, 0, 0, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 1, 4, 0, 0, 5, 0, 1, 0, 2, 0, 0, 6, 1, 0, 0, 5, 0, 0, 7, 1, 0, 0, 2, 1, 0, 2, 1, 1, 0, 0, 4, 2, 0, 1, 4, 1, 0, 0, 0, 1, 0, 0, 6, 1, 0, 2, 1, 1, 0, 1, 1, 3, 0, 0, 1, 4, 0, 1, 0, 2, 0, 1, 0, 2, 0, 0, 4, 2, 0, 2, 0, 1, 1, 0, 0, 5, 0, 0, 2, 3, 0, 0, 2, 1, 0, 1, 1, 3, 0, 0, 3, 6
Offset: 1
Examples
Row 11 is 0, 3, 1 because the rooted tree with Matula-Goebel number 11 is the path tree on 5 vertices R - A - B - C - D; the maximal independent vertex subsets are {R,C}, {A,C}, {A,D}, and {R,B,D}, i.e. none of size 1, three of size 2, and one of size 3. Triangle starts: 1; 2; 1,2; 1,1; 0,3; ...
Links
- É. Czabarka, L. Székely, and S. Wagner, The inverse problem for certain tree parameters, Discrete Appl. Math., 157, 2009, 3314-3319.
- Emeric Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2001.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- H. S. Wilf, The number of maximal independent sets in a tree, SIAM J. Alg. Disc. Math., 7, 1986, 125-130.
- Index entries for sequences related to Matula-Goebel numbers
Crossrefs
Programs
-
Maple
with(numtheory): P := proc (n) local r, s, A, B, C: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: A := proc (n) if n = 1 then x elif bigomega(n) = 1 then x*(B(pi(n))+C(pi(n))) else A(r(n))*A(s(n))/x end if end proc: B := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then A(pi(n)) else sort(expand(B(r(n))*B(s(n))+B(r(n))*C(s(n))+B(s(n))*C(r(n)))) end if end proc: C := proc (n) if n = 1 then 1 elif bigomega(n) = 1 then B(pi(n)) else expand(C(r(n))*C(s(n))) end if end proc: if n = 1 then x else sort(expand(A(n)+B(n))) end if end proc: for n to 12 do seq(coeff(P(n), x, j), j = 1 .. degree(P(n))) end do; # yields sequence in triangular form
-
Mathematica
r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; A[n_] := Which[n == 1, x, PrimeOmega[n] == 1, x*(B[PrimePi[n]] + c[PrimePi[n]]), True, A[r[n]]*A[s[n]]/x]; B[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, A[PrimePi[n]], True, B[r[n]]*B[s[n]] + B[r[n]]*c[s[n]] + B[s[n]]*c[r[n]]]; c[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, B[PrimePi[n]], True, c[r[n]]*c[s[n]]]; P[n_] := A[n] + B[n]; T[n_] := Rest@CoefficientList[P[n], x]; Table[T[n], {n, 1, 50}] // Flatten (* Jean-François Alcover, Jun 19 2024, after Maple code *)
Formula
Let A(n)=A(n,x), B(n)=B(n,x), C(n)=C(n,x) be the generating polynomial with respect to size of the maximal independent sets that contain the root, the maximal independent sets that do not contain the root, and the independent sets which are not maximal but become maximal if the root is removed, respectively. We have : A(1)=x, B(1)=0, C(1)=1, A(t-th prime) = x[B(t) + C(t)], B(t-th prime) = A(t), C(t-th prime)=B(t), A(rs)=A(r)A(s)/x, B(rs)=B(r)B(s)+B(r)C(s)+B(s)C(r), C(rs)=C(r)C(s) (r,s>=2). The generating polynomial of the maximal independent vertex subsets of the r oo ted tree with Matula-Goebel number n, with respect to number of vertices, is P(n)=P(n,x)=A(n)+B(n). The Maple program is based on these relations.
Comments