A212629 Number of vertices in all maximal independent vertex subsets in the rooted tree with Matula-Goebel number n.
1, 2, 3, 3, 6, 6, 4, 4, 9, 9, 9, 8, 8, 8, 14, 5, 8, 15, 5, 11, 11, 14, 15, 10, 22, 15, 25, 10, 11, 20, 14, 6, 22, 11, 17, 19, 10, 10, 20, 13, 15, 18, 10, 17, 33, 25, 20, 12, 13, 28, 17, 18, 6, 36, 32, 12, 13, 20, 11, 24, 19, 22, 29, 7, 31, 31, 10, 13, 33, 24, 13, 23, 18, 19, 45, 12, 26, 32
Offset: 1
Keywords
Examples
a(11)=9 because the rooted tree with Matula-Goebel number 11 is the path tree on 5 vertices R - A - B - C - D; the maximal independent vertex subsets are {R,C}, {A,C}, {A,D}, and {R,B,D}.
Links
- É. Czabarka, L. Székely, and S. Wagner, The inverse problem for certain tree parameters, Discrete Appl. Math., 157, 2009, 3314-3319.
- Emeric Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- H. S. Wilf, The number of maximal independent sets in a tree, SIAM J. Alg. Disc. Math., 7, 1986, 125-130.
- Index entries for sequences related to Matula-Goebel numbers
Programs
-
Maple
with(numtheory): P := proc (n) local r, s, A, B, C: r := n-> op(1, factorset(n)): s := n-> n/r(n): A := proc (n) if n = 1 then x elif bigomega(n) = 1 then x*(B(pi(n))+C(pi(n))) else A(r(n))*A(s(n))/x end if end proc: B := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then A(pi(n)) else sort(expand(B(r(n))*B(s(n))+B(r(n))*C(s(n))+B(s(n))*C(r(n)))) end if end proc: C := proc (n) if n = 1 then 1 elif bigomega(n) = 1 then B(pi(n)) else expand(C(r(n))*C(s(n))) end if end proc: if n = 1 then x else sort(expand(A(n)+B(n))) end if end proc: seq(subs(x = 1, diff(P(n), x)), n = 1 .. 120);
-
Mathematica
r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; A[n_] := Which[n == 1, x, PrimeOmega[n] == 1, x*(B[PrimePi[n]] + c[PrimePi[n]]), True, A[r[n]]*A[s[n]]/x]; B[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, A[PrimePi[n]], True, B[r[n]]*B[s[n]] + B[r[n]]*c[s[n]] + B[s[n]]*c[r[n]]]; c[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, B[PrimePi[n]], True, c[r[n]]*c[s[n]]]; P[n_] := A[n] + B[n]; a[n_] := D[P[n], x] /. x -> 1; Table[a[n], {n, 1, 120}] (* Jean-François Alcover, Jun 20 2024, after Maple code *)
Formula
a(n) = Sum(k*A212627(n,k), k>=1).
Comments