A212630 Irregular triangle read by rows: T(n,k) is the number of dominating subsets with k vertices of the rooted tree with Matula-Goebel number n (n>=1, k>=1).
1, 2, 1, 1, 3, 1, 1, 3, 1, 0, 4, 4, 1, 0, 4, 4, 1, 1, 3, 4, 1, 1, 3, 4, 1, 0, 3, 8, 5, 1, 0, 3, 8, 5, 1, 0, 3, 8, 5, 1, 0, 2, 7, 5, 1, 0, 2, 7, 5, 1, 0, 2, 7, 5, 1, 0, 1, 10, 13, 6, 1, 1, 4, 6, 5, 1, 0, 2, 7, 5, 1, 0, 0, 8, 12, 6, 1, 1, 4, 6, 5, 1, 0, 2, 8, 12, 6
Offset: 1
Examples
Row 3 is [1,3,1] because the rooted tree with Matula-Goebel number 3 is the path tree R - A - B; it has 1, 3, and 1 dominating subsets with 1, 2, and 3 vertices, respectively: [A], [RA, RB, AB], and [RAB]. Triangle begins: 1; 2,1; 1,3,1; 1,3,1; 0,4,4,1; 0,4,4,1; 1,3,4,1; ...
Links
- S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph, arXiv:0905.2251 [math.CO], 2009.
- É. Czabarka, L. Székely, and S. Wagner, The inverse problem for certain tree parameters, Discrete Appl. Math., 157, 2009, 3314-3319.
- Emeric Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- Index entries for sequences related to Matula-Goebel numbers
Programs
-
Maple
with(numtheory): P := proc (n) local r, s, A, B, C: r := n-> op(1, factorset(n)): s := n-> n/r(n): A := proc (n) if n = 1 then x elif bigomega(n) = 1 then x*(A(pi(n))+B(pi(n))+C(pi(n))) else A(r(n))*A(s(n))/x end if end proc: B := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then A(pi(n)) else sort(expand(B(r(n))*B(s(n))+B(r(n))*C(s(n))+B(s(n))*C(r(n)))) end if end proc: C := proc (n) if n = 1 then 1 elif bigomega(n) = 1 then B(pi(n)) else expand(C(r(n))*C(s(n))) end if end proc: sort(expand(A(n)+B(n))) end proc: for n to 20 do seq(coeff(P(n), x, j), j = 1 .. degree(P(n))) end do; # yields sequence in triangular form
-
Mathematica
r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; A[n_] := Which[n == 1, x, PrimeOmega[n] == 1, x*(A[PrimePi[n]] + B[PrimePi[n]] + c[PrimePi[n]]), True, A[r[n]]*A[s[n]]/x]; B[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, A[PrimePi[n]], True, Expand[B[r[n]]*B[s[n]] + B[r[n]]*c[s[n]] + B[s[n]]*c[r[n]]]]; c[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, B[PrimePi[n]], True, Expand[c[r[n]]*c[s[n]]]]; T[n_] := Rest@CoefficientList[A[n] + B[n], x]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Jun 19 2024, after Maple code *)
Formula
Let A(n)=A(n,x), B(n)=B(n,x), and C(n)=C(n,x) be the generating polynomial with respect to size of the dominating subsets which contain the root, of the dominating subsets which do not contain the root, and of the subsets which dominate all vertices except the root, respectively, of the rooted tree with Matula-Goebel number n. We have A(1)=x, B(1)=0, C(1)=1, A(t-th prime) = x [A(t)+B(t)+C(t)], B(t-th prime) = A(t), C(t-th prime) = B(t); A(rs) = A(r)A(s)/x, B(rs) = B(r)B(s) + B(r)C(s) + B(s)C(r) (r,s>=2). The generating polynomial of the dominating subsets with respect to size (i.e. the domination polynomial) is P(n)=P(n,x)=A(n)+B(n). The Maple program is based on these recurrence relations.
Comments