cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212630 Irregular triangle read by rows: T(n,k) is the number of dominating subsets with k vertices of the rooted tree with Matula-Goebel number n (n>=1, k>=1).

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 1, 3, 1, 0, 4, 4, 1, 0, 4, 4, 1, 1, 3, 4, 1, 1, 3, 4, 1, 0, 3, 8, 5, 1, 0, 3, 8, 5, 1, 0, 3, 8, 5, 1, 0, 2, 7, 5, 1, 0, 2, 7, 5, 1, 0, 2, 7, 5, 1, 0, 1, 10, 13, 6, 1, 1, 4, 6, 5, 1, 0, 2, 7, 5, 1, 0, 0, 8, 12, 6, 1, 1, 4, 6, 5, 1, 0, 2, 8, 12, 6
Offset: 1

Views

Author

Emeric Deutsch, Jun 11 2012

Keywords

Comments

The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
The entries in row n are the coefficients of the domination polynomial of the rooted tree with Matula-Goebel number n (see the Alikhani and Peng reference).
Sum of entries in row n = A212631(n) (number of dominating subsets).
The order of the first nonzero entry in row n = A212632(n) (the domination number).

Examples

			Row 3 is [1,3,1] because the rooted tree with Matula-Goebel number 3 is the path tree R - A - B; it has 1, 3, and 1 dominating subsets with 1, 2, and 3 vertices, respectively: [A], [RA, RB, AB], and [RAB].
Triangle begins:
  1;
  2,1;
  1,3,1;
  1,3,1;
  0,4,4,1;
  0,4,4,1;
  1,3,4,1;
  ...
		

Crossrefs

Programs

  • Maple
    with(numtheory): P := proc (n) local r, s, A, B, C: r := n-> op(1, factorset(n)): s := n-> n/r(n): A := proc (n) if n = 1 then x elif bigomega(n) = 1 then x*(A(pi(n))+B(pi(n))+C(pi(n))) else A(r(n))*A(s(n))/x end if end proc: B := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then A(pi(n)) else sort(expand(B(r(n))*B(s(n))+B(r(n))*C(s(n))+B(s(n))*C(r(n)))) end if end proc: C := proc (n) if n = 1 then 1 elif bigomega(n) = 1 then B(pi(n)) else expand(C(r(n))*C(s(n))) end if end proc: sort(expand(A(n)+B(n))) end proc: for n to 20 do seq(coeff(P(n), x, j), j = 1 .. degree(P(n))) end do; # yields sequence in triangular form
  • Mathematica
    r[n_] := FactorInteger[n][[1, 1]];
    s[n_] := n/r[n];
    A[n_] := Which[n == 1, x, PrimeOmega[n] == 1, x*(A[PrimePi[n]] + B[PrimePi[n]] + c[PrimePi[n]]), True, A[r[n]]*A[s[n]]/x];
    B[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, A[PrimePi[n]], True, Expand[B[r[n]]*B[s[n]] + B[r[n]]*c[s[n]] + B[s[n]]*c[r[n]]]];
    c[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, B[PrimePi[n]], True,  Expand[c[r[n]]*c[s[n]]]];
    T[n_] := Rest@CoefficientList[A[n] + B[n], x];
    Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Jun 19 2024, after Maple code *)

Formula

Let A(n)=A(n,x), B(n)=B(n,x), and C(n)=C(n,x) be the generating polynomial with respect to size of the dominating subsets which contain the root, of the dominating subsets which do not contain the root, and of the subsets which dominate all vertices except the root, respectively, of the rooted tree with Matula-Goebel number n. We have A(1)=x, B(1)=0, C(1)=1, A(t-th prime) = x [A(t)+B(t)+C(t)], B(t-th prime) = A(t), C(t-th prime) = B(t); A(rs) = A(r)A(s)/x, B(rs) = B(r)B(s) + B(r)C(s) + B(s)C(r) (r,s>=2). The generating polynomial of the dominating subsets with respect to size (i.e. the domination polynomial) is P(n)=P(n,x)=A(n)+B(n). The Maple program is based on these recurrence relations.