cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212631 Number of dominating subsets of the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

1, 3, 5, 5, 9, 9, 9, 9, 17, 17, 17, 15, 15, 15, 31, 17, 15, 27, 17, 29, 29, 31, 27, 27, 57, 27, 53, 25, 29, 51, 31, 33, 57, 29, 53, 45, 27, 27, 51, 53, 27, 45, 25, 53, 97, 53, 51, 51, 49, 97, 53, 45, 33, 81, 105, 45, 53, 51, 29, 87, 45, 57, 89, 65, 93, 93, 27
Offset: 1

Views

Author

Emeric Deutsch, Jun 11 2012

Keywords

Comments

The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
a(n) = Sum(A212630(n,k), k>=1).
a(n) is odd (see the Brouwer-Csorba-Schrijver reference).

Examples

			a(3)=5 because the rooted tree with Matula-Goebel number 3 is the path tree R - A - B; its dominating subsets are {A}, {R,A}, {R,B}, {A,B}, and {R,A,B}.
		

References

  • A. E. Brouwer, P. Csorba, and A. Schrijver, The number of dominating sets of a finite graph is odd. Preprint available on A. E. Brouwer's homepage.

Crossrefs

Programs

  • Maple
    with(numtheory): P := proc (n) local r, s, A, B, C: r := n-> op(1, factorset(n)): s := n-> n/r(n): A := proc (n) if n = 1 then x elif bigomega(n) = 1 then x*(A(pi(n))+B(pi(n))+C(pi(n))) else A(r(n))*A(s(n))/x end if end proc: B := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then A(pi(n)) else sort(expand(B(r(n))*B(s(n))+B(r(n))*C(s(n))+B(s(n))*C(r(n)))) end if end proc: C := proc (n) if n = 1 then 1 elif bigomega(n) = 1 then B(pi(n)) else expand(C(r(n))*C(s(n))) end if end proc: sort(expand(A(n)+B(n))) end proc: seq(subs(x = 1, P(n)), n = 1 .. 100);
  • Mathematica
    r[n_] := FactorInteger[n][[1, 1]];
    s[n_] := n/r[n];
    A[n_] := Which[n == 1, x, PrimeOmega[n] == 1, x*(A[PrimePi[n]] + B[PrimePi[n]] + c[PrimePi[n]]), True, A[r[n]]*A[s[n]]/x];
    B[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, A[PrimePi[n]], True, Expand[B[r[n]]*B[s[n]] + B[r[n]]*c[s[n]] + B[s[n]]*c[r[n]]]];
    c[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, B[PrimePi[n]], True,  Expand[c[r[n]]*c[s[n]]]];
    a[n_] := A[n] + B[n] /. x -> 1;
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 19 2024, after Maple code *)

Formula

In A212630 one gives the domination polynomial P(n)=P(n,x) of the rooted tree with Matula-Goebel number n. We have a(n) = P(n,1).