A212632 The domination number of the rooted tree with Matula-Goebel number n.
1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 3, 1, 2, 2, 2, 3, 2, 3, 3, 3, 2, 2, 3, 2, 1, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 1, 4, 3, 2, 2, 3, 2, 3, 3, 3, 3, 1, 3, 3, 2, 2, 3, 3, 2, 3, 3, 3, 3, 2, 3, 4, 2, 2, 4, 3, 3, 3, 3, 3, 3, 2
Offset: 1
Keywords
Examples
a(5)=2 because the rooted tree with Matula-Goebel number 5 is the path tree R - A - B - C; {A,B} is a dominating subset and there is no dominating subset of smaller cardinality.
Links
- S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph, arXiv:0905.2251 [math.CO], 2009.
- É. Czabarka, L. Székely, and S. Wagner, The inverse problem for certain tree parameters, Discrete Appl. Math., 157, 2009, 3314-3319.
- E. Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- Index entries for sequences related to Matula-Goebel numbers
Programs
-
Maple
with(numtheory): P := proc (n) local r, s, A, B, C: r := n -> op(1, factorset(n)): s := n-> n/r(n): A := proc (n) if n = 1 then x elif bigomega(n) = 1 then x*(A(pi(n))+B(pi(n))+C(pi(n))) else A(r(n))*A(s(n))/x end if end proc: B := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then A(pi(n)) else sort(expand(B(r(n))*B(s(n))+B(r(n))*C(s(n))+B(s(n))*C(r(n)))) end if end proc: C := proc (n) if n = 1 then 1 elif bigomega(n) = 1 then B(pi(n)) else expand(C(r(n))*C(s(n))) end if end proc: sort(expand(A(n)+B(n))) end proc: A212632 := n->degree(P(n))-degree(numer(subs(x = 1/x, P(n)))): seq(A212632(n), n = 1 .. 120);
-
Mathematica
A[n_] := Which[n == 1, x, PrimeOmega[n] == 1, x*(A[PrimePi[n]] + B[PrimePi[n]] + c[PrimePi[n]]), True, A[r[n]]*A[s[n]]/x]; B[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, A[PrimePi[n]], True, Expand[B[r[n]]*B[s[n]] + B[r[n]]*c[s[n]] + B[s[n]]*c[r[n]]]]; c[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, B[PrimePi[n]], True, Expand[c[r[n]]*c[s[n]]]]; r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; P[n_] := Expand[A[n] + B[n]]; a[n_] := Exponent[P[n], x] - Exponent[Numerator[P[n] /. x -> 1/x // Together], x]; Array[a, 100] (* Jean-François Alcover, Nov 14 2017, after Emeric Deutsch *)
Formula
In A212630 one gives the domination polynomial P(n)=P(n,x) of the rooted tree with Matula-Goebel number n. We have a(n) = least exponent in P(n,x).
Comments