A212663 Number of ways to represent n’ as x’ + y’, where x+y = n, x > 0, and n’, x’, y’ are the arithmetic derivatives of n, x, y.
0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 1, 1, 0, 1, 2, 0, 1
Offset: 1
Keywords
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..5000
Programs
-
Maple
with(numtheory); A212663:=proc(q) local a,b,c,i,n,p,pfs,t; for n from 1 to q do pfs:=ifactors(n)[2]; a:=n*add(op(2,p)/op(1,p),p=pfs); t:=0; for i from 1 to trunc(n/2) do pfs:=ifactors(i)[2]; b:=i*add(op(2,p)/op(1,p),p=pfs); pfs:=ifactors(n-i)[2]; c:=(n-i)*add(op(2,p)/op(1,p),p=pfs); if a=b+c then t:=t+1; fi; od; print(t); od; end: A212663(1000);