A212685 Number of (w,x,y,z) with all terms in {1,...,n} and |w-x|=w+|y-z|.
0, 0, 2, 7, 18, 36, 64, 103, 156, 224, 310, 415, 542, 692, 868, 1071, 1304, 1568, 1866, 2199, 2570, 2980, 3432, 3927, 4468, 5056, 5694, 6383, 7126, 7924, 8780, 9695, 10672, 11712, 12818, 13991, 15234, 16548, 17936, 19399, 20940, 22560
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3, -2, -2, 3, -1).
Crossrefs
Cf. A211795.
Programs
-
Mathematica
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[Abs[w - x] == w + Abs[y - z], s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]]; Map[t[#] &, Range[0, 40]] (* A212685 *) LinearRecurrence[{3, -2, -2, 3, -1}, {0, 0, 2, 7, 18}, 40]
Formula
a(n)=3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5).
G.f.: (2*x^2 + x^3 + x^4)/(1 - 3*x + 2*x^2 + 2*x^3 - 3*x^4 + x^5).
a(n)=(-3+3*(-1)^n+4*n-6*n^2+8*n^3)/24. [Colin Barker, Jun 10 2012]
Comments