This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212690 #9 Aug 01 2015 10:27:18 %S A212690 0,1,16,75,236,567,1172,2157,3672,5861,8920,13031,18436,25355,34076, %T A212690 44857,58032,73897,92832,115171,141340,171711,206756,246885,292616, %U A212690 344397,402792,468287,541492,622931,713260,813041,922976,1043665 %N A212690 Number of (w,x,y,z) with all terms in {1,...,n} and 2|w-x|<=n+|y-z|. %C A212690 a(n)+A212689(n)=n^4. %C A212690 For a guide to related sequences, see A211795. %H A212690 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (3, -1, -5, 5, 1, -3, 1). %F A212690 a(n)=3*a(n-1)-a(n-2)-5*a(n-3)+5*a(n-4)+a(n-5)-3*a(n-6)+a(n-7). %F A212690 G.f.: (x + 13*x^2 + 28*x^3 + 32*x^4 + 9*x^5 + x^6)/(1 - 3*x + x^2 + 5*x^3 - 5*x^4 - x^5 + 3*x^6 - x^7). %t A212690 t = Compile[{{n, _Integer}}, Module[{s = 0}, %t A212690 (Do[If[2 Abs[w - x] <= n + Abs[y - z], s = s + 1], %t A212690 {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]]; %t A212690 Map[t[#] &, Range[0, 40]] (* A212690 *) %t A212690 LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {0, 1, 16, 75, 236, 567, 1172}, 40] %Y A212690 Cf. A211795. %K A212690 nonn,easy %O A212690 0,3 %A A212690 _Clark Kimberling_, May 25 2012