A212692 Number of (w,x,y,z) with all terms in {1,...,n} and w<|x-y|+|y-z|.
0, 0, 6, 22, 54, 106, 184, 292, 436, 620, 850, 1130, 1466, 1862, 2324, 2856, 3464, 4152, 4926, 5790, 6750, 7810, 8976, 10252, 11644, 13156, 14794, 16562, 18466, 20510, 22700, 25040, 27536, 30192, 33014, 36006, 39174, 42522, 46056, 49780
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3, -2, -2, 3, -1).
Crossrefs
Cf. A211795.
Programs
-
Mathematica
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[w == Abs[x - y] + Abs[y - z], s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]]; Map[t[#] &, Range[0, 40]] (* A212692 *) %/2 (* integers *) LinearRecurrence[{3, -2, -2, 3, -1}, {0, 0, 6, 22, 54}, 40]
Formula
a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5).
G.f.: (6*x^2 + 4*x^3)/(1 - 3*x + 2* x^2 + 2*x^3 - 3*x^4 + x^5).
Comments