This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212721 #23 Jun 29 2019 03:59:09 %S A212721 1,1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,6,1,2,3,4,5,6,8,9,1,2,3,4,5,6,7,8,9, %T A212721 10,12,1,2,3,4,5,6,7,8,9,10,12,15,16,18,1,2,3,4,5,6,7,8,9,10,12,14,15, %U A212721 16,18,20,24,27,1,2,3,4,5,6,7,8,9,10,12,14 %N A212721 Triangle read by rows: n-th row gives distinct products of partitions of n (A000041). %C A212721 A034891(n) = length of n-th row; %C A212721 A000792(n) = largest term of n-th row; %C A212721 for n>5: A007918(n) = smallest number <= A000792(n) not occurring in n-th row. %H A212721 Reinhard Zumkeller, <a href="/A212721/b212721.txt">Rows n = 0..36 of triangle, flattened</a> %e A212721 A000041(6)=11, the 11 partitions and their products of 6: %e A212721 1: (1,1,1,1,1,1) -> 1 * 1 * 1 * 1 * 1 * 1 = 1 %e A212721 2: (1,1,1,1,2) -> 1 * 1 * 1 * 1 * 2 = 2 %e A212721 3: (1,1,1,3) -> 1 * 1 * 1 * 3 = 3 %e A212721 4: (1,1,2,2) -> 1 * 1 * 2 * 2 = 4 %e A212721 5: (1,1,4) -> 1 * 1 * 4 = 4 %e A212721 6: (1,2,3) -> 1 * 2 * 3 = 6 %e A212721 7: (1,5) -> 1 * 5 = 5 %e A212721 8: (2,2,2) -> 2 * 2 * 2 = 8 %e A212721 9: (2,4) -> 2 * 4 = 8 %e A212721 10: (3,3) -> 3 * 3 = 9 %e A212721 11: (6) -> 6, %e A212721 sorted and duplicates removed: T(6,1..8)=[1,2,3,4,5,6,8,9], A034891(6)=8. %e A212721 The triangle begins: %e A212721 0 | [1] %e A212721 1 | [1] %e A212721 2 | [1,2] %e A212721 3 | [1,2,3] %e A212721 4 | [1,2,3,4] %e A212721 5 | [1,2,3,4,5,6] %e A212721 6 | [1,2,3,4,5,6,8,9] %e A212721 7 | [1,2,3,4,5,6,7,8,9,10,12] %e A212721 8 | [1,2,3,4,5,6,7,8,9,10,12,15,16,18] %e A212721 9 | [1,2,3,4,5,6,7,8,9,10,12,14,15,16,18,20,24,27] %e A212721 10 | [1,2,3,4,5,6,7,8,9,10,12,14,15,16,18,20,21,24,25,27,30,32,36]. %t A212721 row[n_] := Union[Times @@@ IntegerPartitions[n]]; %t A212721 Table[row[n], {n, 0, 10}] (* _Jean-François Alcover_, Jun 29 2019 *) %o A212721 (Haskell) %o A212721 import Data.List (nub, sort) %o A212721 a212721 n k = a212721_row n !! (k-1) %o A212721 a212721_row = nub . sort . (map product) . ps 1 where %o A212721 ps x 0 = [[]] %o A212721 ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)] %o A212721 a212721_tabf = map a212721_row [0..] %o A212721 (Sage) %o A212721 [sorted(list(set([mul(p) for p in Partitions(n)]))) for n in range(11)] # _Peter Luschny_, Dec 13 2015 %Y A212721 Cf. A000041, A000792, A034891. %K A212721 nonn,tabf,look %O A212721 0,4 %A A212721 _Reinhard Zumkeller_, Jun 14 2012