This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212737 #39 Feb 16 2025 08:33:17 %S A212737 1,1,3,1,2,7,1,2,4,5,1,2,4,8,15,1,2,3,3,13,31,1,2,5,6,6,26,9,1,2,3,10, %T A212737 4,8,5,21,1,2,4,4,3,8,12,10,63,1,2,3,8,6,4,12,24,16,127,1,2,11,6,16, %U A212737 12,6,16,31,20,17,1,2,4,22,9,3,7,8,24,62,40,51 %N A212737 Square array A(n,k), n>=1, k>=1, read by antidiagonals, where column k lists the orders of degree-d irreducible polynomials over GF(prime(k)); listing order for each column: ascending d, ascending value. %H A212737 Alois P. Heinz, <a href="/A212737/b212737.txt">Antidiagonals n = 1..141, flattened</a> %H A212737 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IrreduciblePolynomial.html">Irreducible Polynomial</a> %H A212737 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PolynomialOrder.html">Polynomial Order</a> %F A212737 Formulae for the column sequences are given in A059912, A212906, ... . %e A212737 For k=1 the irreducible polynomials over GF(prime(1)) = GF(2) of degree 1-4 are: x, 1+x; 1+x+x^2; 1+x+x^3, 1+x^2+x^3; 1+x+x^2+x^3+x^4, 1+x+x^4, 1+x^3+x^4. The orders of these polynomials p (i.e., the smallest integer e for which p divides x^e+1) are 1; 3; 7; 5, 15. (Example: (1+x^3+x^4) * (1+x^3+x^4+x^6+x^8+x^9+x^10+x^11) == x^15+1 (mod 2)). Thus column k=1 begins: 1, 3, 7, 5, 15, ... . %e A212737 Square array A(n,k) begins: %e A212737 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A212737 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... %e A212737 7, 4, 4, 3, 5, 3, 4, 3, 11, 4, ... %e A212737 5, 8, 3, 6, 10, 4, 8, 6, 22, 7, ... %e A212737 15, 13, 6, 4, 3, 6, 16, 9, 3, 14, ... %e A212737 31, 26, 8, 8, 4, 12, 3, 18, 4, 28, ... %e A212737 9, 5, 12, 12, 6, 7, 6, 4, 6, 3, ... %e A212737 21, 10, 24, 16, 8, 8, 9, 5, 8, 5, ... %e A212737 63, 16, 31, 24, 12, 14, 12, 8, 12, 6, ... %e A212737 127, 20, 62, 48, 15, 21, 18, 10, 16, 8, ... %p A212737 with(numtheory): %p A212737 M:= proc(n, i) M(n, i):= divisors(ithprime(i)^n-1) minus U(n-1, i) end: %p A212737 U:= proc(n, i) U(n, i):= `if`(n=0, {}, M(n, i) union U(n-1, i)) end: %p A212737 b:= proc(n, i) b(n, i):= sort([M(n, i)[]])[] end: %p A212737 A:= proc() local l; l:= proc() [] end; %p A212737 proc(n, k) local t; %p A212737 if nops(l(k))<n then l(k):= []; %p A212737 for t while nops(l(k))<n %p A212737 do l(k):= [l(k)[], b(t, k)] od %p A212737 fi; l(k)[n] %p A212737 end: %p A212737 end(): %p A212737 seq(seq(A(n, 1+d-n), n=1..d), d=1..15); %t A212737 m[n_, i_] := Divisors[Prime[i]^n-1] ~Complement~ u[n-1, i]; u[n_, i_] := u[n, i] = If[n == 0, {}, m[n, i] ~Union~ u[n-1, i]]; b[n_, i_] := Sort[m[n, i]]; a = Module[{l}, l[_] = {}; Function[{n, k}, Module[{t}, If [Length[l[k]] < n, l[k] = {}; For[t = 1, Length[l[k]] < n, t++, l[k] = Join[l[k], b[t, k]]]]; l[k][[n]]]]]; Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 15}] // Flatten (* _Jean-François Alcover_, Dec 20 2013, translated from Maple *) %Y A212737 Columns k=1-10 give: A059912, A212906, A212485, A212486, A218336, A218337, A218338, A218339, A218340, A218341. %K A212737 nonn,look,tabl %O A212737 1,3 %A A212737 _Alois P. Heinz_, Jun 02 2012